

Process Design and Comparison of Three Innovative Technologies for Biomethane Production and/or Purification and Upgrading from Biomass and Biological Wastes

<u>Filippo Bisotti</u>, Matteo Gilardi, Bernd Wittgens SINTEF Industry – Process Technology

Scan the QR code Visit our webpage and subscribe the newsletter

Outlines

Introduction

Role of biogas in the EU decarbonization strategy

Processes overview
Processes description
and brief overview on
modelling strategies

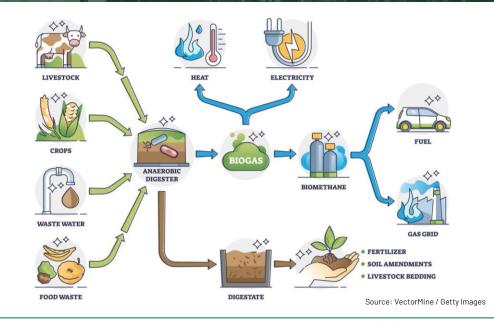
Results

Main KPIs and other comments

Conclusions

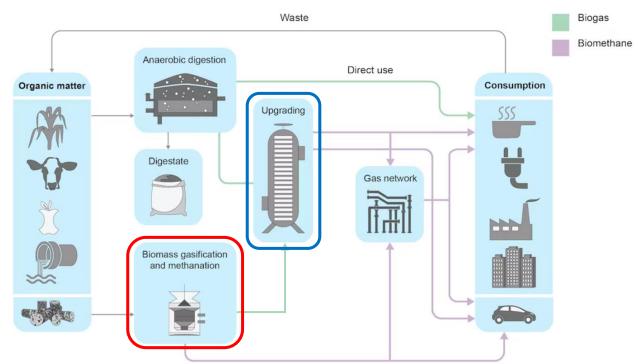
Achievements & future works

1.Introduction


Biogas production

- Mainly produced via anaerobic digestion
- CH₄ content variable from 45 to 75 vol%
- The remaining is wet CO₂ with traces of NH₃ and H₂S
- Upgrading is necessary for applications of bio-CH₄ as fuel or transport (either gas o liquid)

European Biogas Association - https://www.europeanbiogas.eu/
IEA - <a href="https://www.iea.org/reports/outlook-for-biogas-and-biomethane-prospects-for-organic-growth/an-introduction-to-biogas-and-biomethane-prospects-for-organic-growth/an-introduction-to-biogas-and-biomethane-prospects-for-organic-growth/an-introduction-to-biogas-and-biomethane-prospects-for-organic-growth/an-introduction-to-biogas-and-biomethane-prospects-for-organic-growth/an-introduction-to-biogas-and-biomethane-prospects-for-organic-growth/an-introduction-to-biogas-and-biomethane-prospects-for-organic-growth/an-introduction-to-biogas-and-biomethane-prospects-for-organic-growth/an-introduction-to-biogas-and-biomethane-prospects-for-organic-growth/an-introduction-to-biogas-and-biomethane-prospects-for-organic-growth/an-introduction-to-biogas-and-biomethane-prospects-for-organic-growth/an-introduction-to-biogas-and-biomethane-prospects-for-organic-growth/an-introduction-to-biogas-and-biomethane-prospects-for-organic-growth/an-introduction-to-biogas-and-biomethane-prospects-for-organic-growth/an-introduction-to-biogas-and-biomethane-prospects-for-organic-growth/an-introduction-to-biogas-and-biomethane-prospects-for-organic-growth/an-introduction-to-biogas-and-biomethane-prospects-for-organic-growth/an-introduction-to-biogas-and-biomethane-prospects-for-organic-growth-



Biogas production

- Upgrading is crucial to meet specs for transport in the NG grid
- Upgrading is also relevant for liquefaction and delivery (supply chain)

SEMPRE-BIO project

- SEMPRE-BIO aims at demonstrating novel and cost-effective bio-CH₄ production solutions to support the circular economy and reduce dependence on fossil fuels
- Biomethane production tested in 3 demo plants across Europe accounting for different feedstocks

SEcuring doMestic PRoduction of cost-Effective BIOmethane

Total funding € 9 926 450

HORIZON-IA

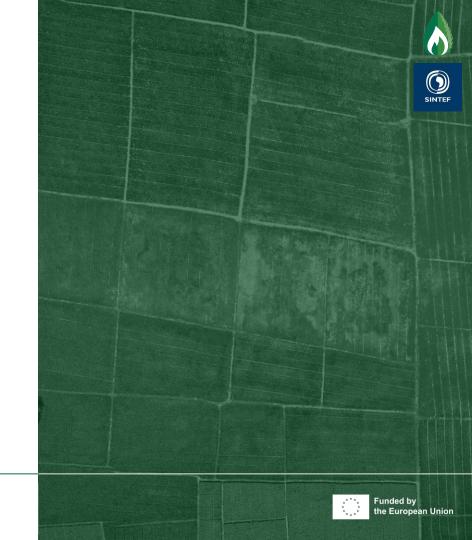
Case studies

Aigües de Barcelona, Barcelona, Spain

Terrawatt, Marmagne, France

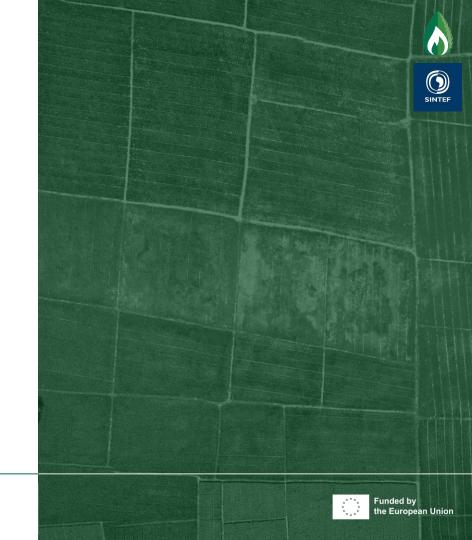
Direct biomethanation of bio-gas/syngas

De zwanebloem, De Panne, Belgium


Biogas upgrade and bio-CH₄ Liquefaction

Source: SEMPRE-BIO webpage

2.Processes



CSI

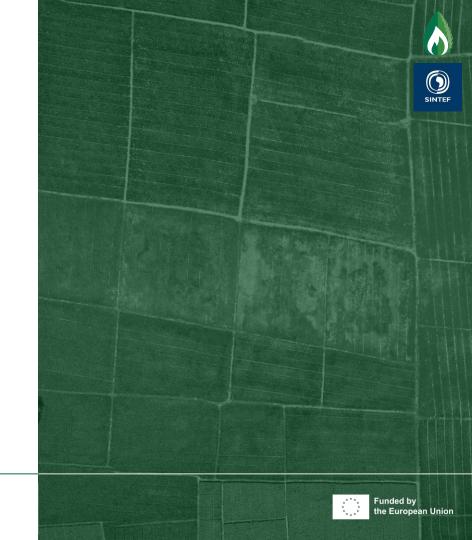
Aigües de Barcelona, Barcelona, Spain

Direct biomethanation of biogas

Block Flow Diagram CS1

- Direct biomethanation of biogas to bio-CH₄
- Application for transport engines burning bio-CH₄
- Simulation in COFE V3.6, license-free simulation software by AmsterChem

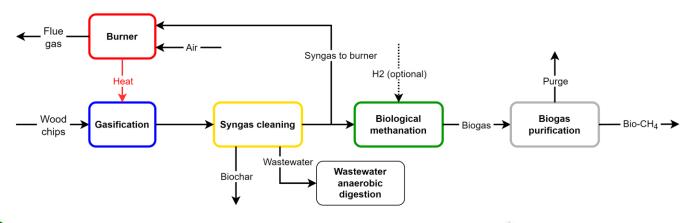
Technology provider:



CS2

Terrawatt, Marmagne, France

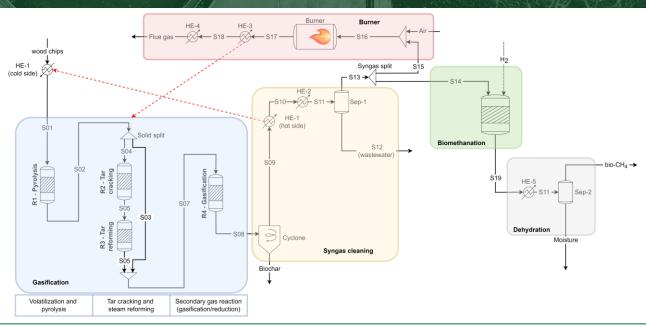
Bio-syngas biomethanation



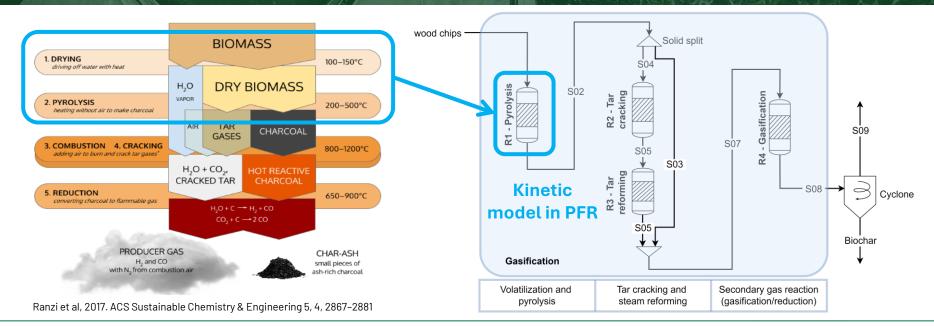
Block Flow Diagram CS2

- Biomass gasification followed by biomethanation of syngas
- Simulation in COFE
 V3.6, license-free
 simulation software by
 AmsterChem

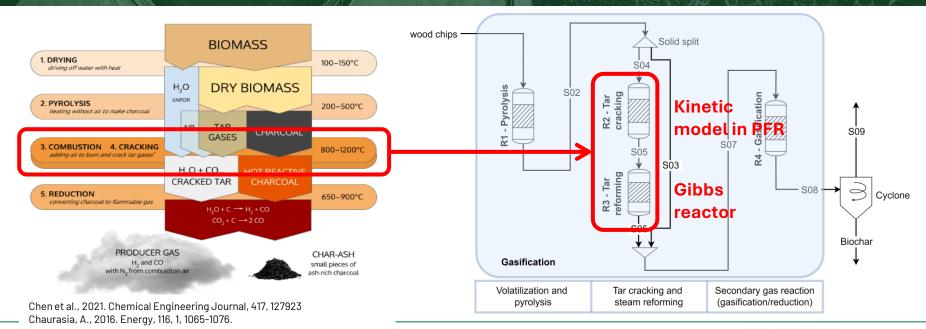
Technology provider:



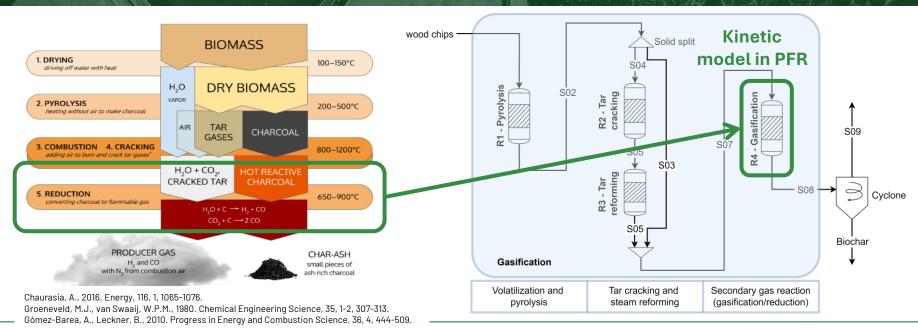
Process Flow Diagram



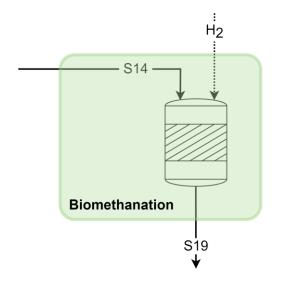
Biomass gasification



Biomass gasification



Biomass gasification



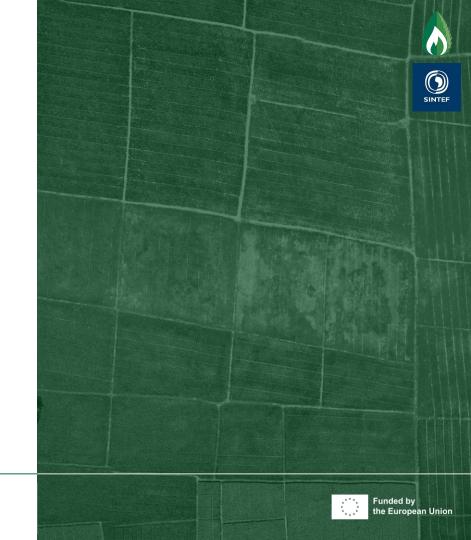
Biomethanation

Li et al., 2020. Biosource Technology, 314, 123739

- Two cases: CS2A with extra H2 and CS2B without addition
- Modelled as a data-driven black box with conversion and yield for thermophilic bacteria retrieved from the literature

$$\begin{array}{c} \text{CO} + 3 \text{ H}_2 \rightarrow \text{CH}_4 + \text{H}_2\text{O} \\ \text{CO}_4 + 4 \text{ H}_2 \rightarrow \text{CH}_4 + 2 \text{ H}_2\text{O} \\ 4 \text{ CO} + 2 \text{ H}_2\text{O} \rightarrow \text{CH}_3\text{COOH} + 2 \text{ CO}_2 \end{array}$$

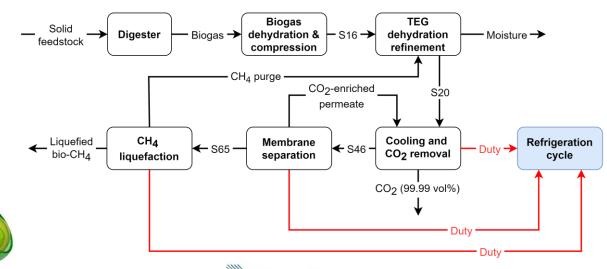
- Reaction extent (stoichiometric reactor) is tuned to meet the
 - observed complete depletion of CO
 - 2. bio-CH₄ yield and purity
 - 3. acetic acid production

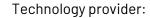


CS3

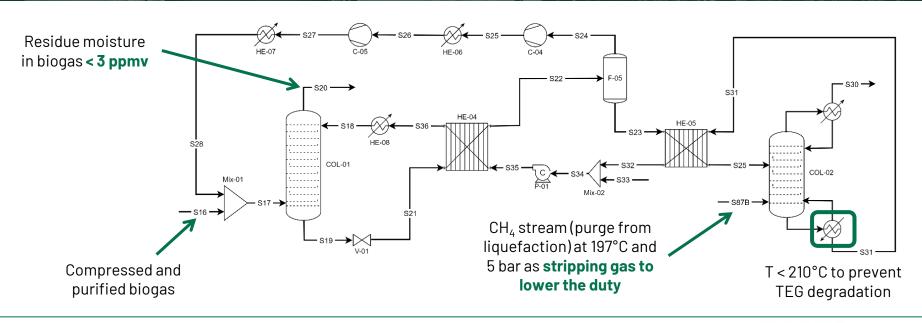
De zwanebloem, De Panne, Belgium

Biogas upgrade and bio-CH₄ Liquefaction

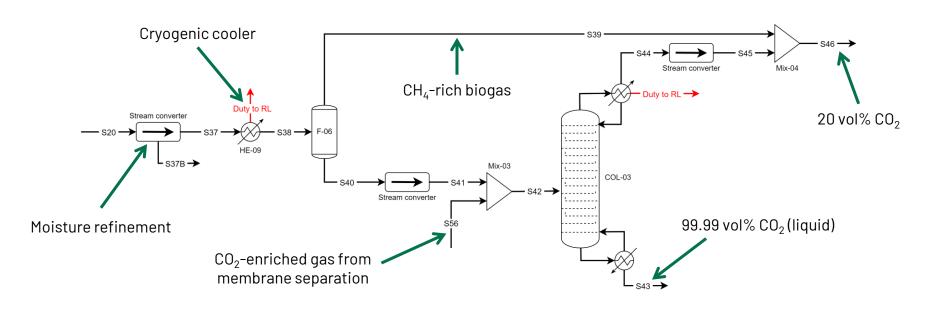



Block Flow Diagram CS3

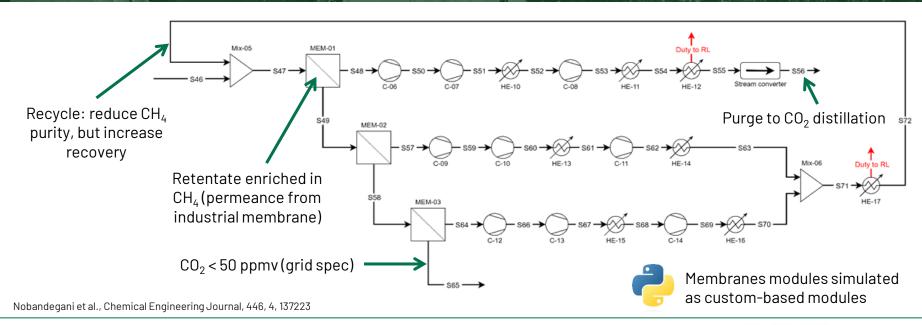
- Upgrading and liquefaction of bio-CH₄
- Application for transport of bio-CH₄ delivery in the absence of surrounding infrastructure (e.g., farms and remote biogas sites)
- Simulation in COFE V3.6, license-free simulation software by AmsterChem



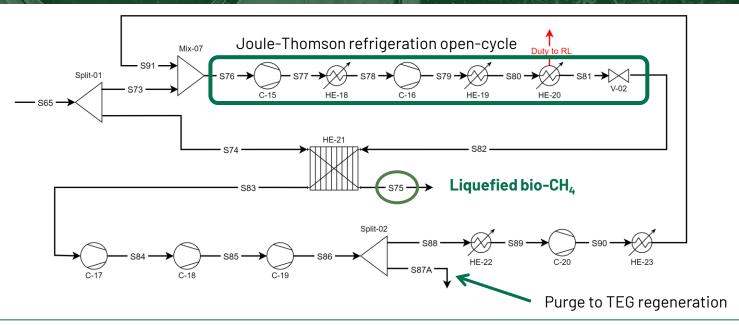
TEG dehydration



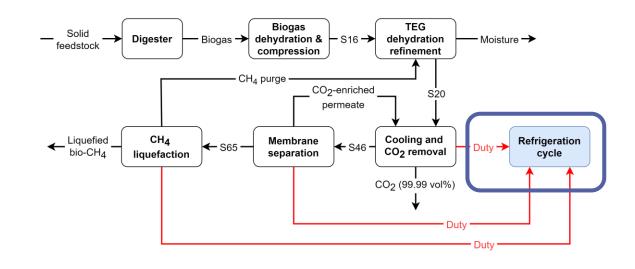
CO₂ removal



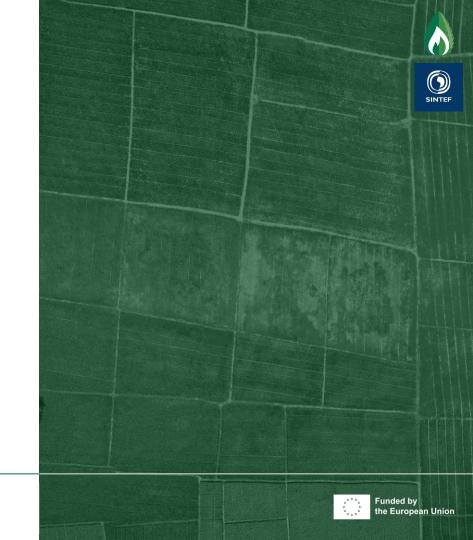
CO₂ refinement



CH₄ liquefaction



Cold box


- Cold box temperature is kept through an external refrigeration loop based on a Joule-Thompson cycle
- Working fluid is a mixture of C₂:C₃ hydrocarbon at 92:8 on a mass basis
- Pressure drop across the lamination valve is 45 bar

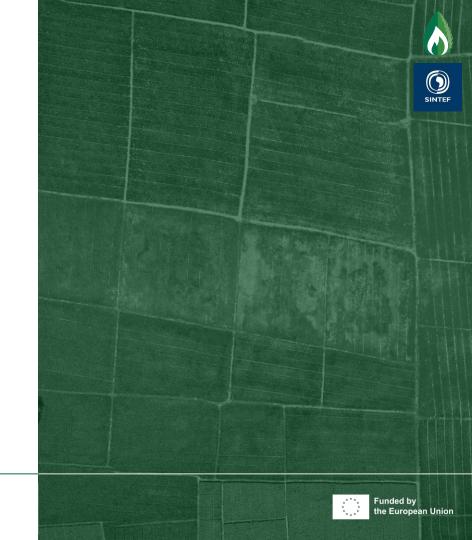
3.1 Results

Processes KPIs

	CS1 (ES)	CS2A(FR)	CS2B (FR)	CS3 (BE)
Solid feedstock	Wastewater sludge	Lignocellulosic biomass		Manure
Bio-CH ₄ productivity (kg _{bio-CH4} /ton _{dry feedstock})	9.20	220	107	12.1
Bio-CH ₄ purity (vol%)	97.2	96.5	50.7	99.99+
Impurities(vol%)	$N_2 - O_2 (1.5 - 0.4\%)$ $H_2 (0.4\%)$ $CO_2 (0.4\%)$	CO ₂ (3.2%) CO (30 ppm _v) C ₂₊ (0.2%)	CO ₂ (35.8%) CO (13.5%)	CO ₂ (42 ppm _v)

Processes KPIs

	CS1 (ES)	CS2A(FR)	CS2B(FR)	CS3(BE)
Cool water demand (kg/kg _{bio-CH4 delivered})	Wastewater sludge	Lignocellulosic biomass		Manure
Steam (kg/kg _{bio-CH4 delivered})	-	Gasification consumes moisture vaporised from biomass		0.76
Electricity (kWh/kg _{bio-CH4 delivered})	10.8	12.7	Negligible	3.10
H ₂ demand* (kg/kg _{bio-CH4 delivered})	0.18	0.24	NA	NA


^{*}H₂ from a PEM electrolyser, consuming on average 53 kWh/kg_{H2}

3.2 Bio-CH₄ upgrading

What are the advantages of CS3 compared to the conventional carbon capture option?



Input data

- Manure is the solid feedstock
- Produced biogas is a sensitive info
- Biogas composition (used for the simulation)

 $\begin{array}{lll} \text{CH}_4 & 57.5 \text{ vol}\% \\ \text{CO}_2 & 39.5 \text{ vol}\% \\ \text{Moisture} & \sim 3.0 \text{ vol}\% \\ \text{H}_2\text{S/NH}_3 & \sim 200 \text{ ppmv} \end{array}$

Utilities

Compressors
Pumps
Refrigeration loop
Air cooler

Heat exchanger (interstage cooling) Top condenser chiller Reboiler of CO₂ distillation

TEG regeneration

Results CS3 (KPIs)

Key Performance Indicator	Value	Note
CH ₄ recovery (before liquefaction)	96.0%	Basis: mass flow bio-CH ₄ in biogas from anaerobic digester Purity 99.99+ vol%
CH ₄ liquefied	91.2%	After liquefaction cycle
CO ₂ recovery	80.6%	Basis: bio-CO ₂ in biogas from anaerobic digestor As liquid at 99.99 vol% purity

CS3 KPIs

Key Performance Indicator	Value	Note
Electricity demand	3.10 kWh _{el} /kg _{CH4 liq} 1.19 kWh _{el} /Nm ³ _{biogas}	Normal condition: 1 bar and 0°C Include refrigeration, compressions and others
Heat demand	0.38 kWh _{th} /kg _{CH4liq} 0.15 kWh _{th} /Nm ³ _{biogas}	Mainly steam
Steam demand	0.76 kg/kg _{CH4 liq} 0.29 kg/Nm³ _{biogas}	Saturated steam at 225°C (25 bar)
Cooling water demand	196.2 kg/kg _{CH4 liq} 75.6 kg/Nm³ _{biogas}	Assuming CW at 20°C and max discharge temperature 30°C

Comparison

KPI	Study work (no liquefaction)	MDEA 50 wt%	Optimised MDEA
CH ₄ purity	99.99+ vol%	98 vol%	98 vol%
CO ₂ purity	99.99 vol%	Off specs	Off specs
Pressure (bar)	Sensitive	2	2
Impurities in CH ₄ and CO ₂	Negligible	Moisture Amine (above limit 10 mg/Nm³)	Moisture Amine (above limit 10 mg/Nm³)
Electricity demand	0.80 kWh _{el} /Nm ³ _{biogas}	0.10 kWh _{el} /Nm³ _{biogas}	0.10 kWh _{el} /Nm ³ _{biogas}
Heat demand	0.15 kWh _{th} /Nm ³ _{biogas}	0.30 kWh _{th} /Nm ³ _{biogas}	0.26 kWh _{th} /Nm ³ _{biogas}

MDEA 50 wt%: Pellegrini et al., Chemical Engineering Transaction, 43, 409-414

Optimised MDEA: Capra et al., Energy Procedia, 148, 970-977

Comments

- Cryogenic process delivers far purer CH₄ and CO₂ without moisture and potential corrosive amines
- Amine scrubbing studies limit their analysis to CO₂ and acid gas removal, but further purification is disregarded
- Energy demand exponentially increases as purity specs becomes strict and imposes limitations on which pollutants (and how much is tolerated)

KPI	Study work	MDEA 50 wt%	Optimised MDEA
CH ₄ purity	99.99+ vol%	98 vol%	98 vol%
CO ₂ purity	99.99 vol%	Off specs	Off specs
Impurities in CH ₄ and CO ₂	Negligible	Moisture Volatile amine	Moisture Volatile amine
Electricity demand (kWh _{el} /Nm³ _{biogas})	0.80	0.10	0.10
Heat demand (kWh _{th} /Nm³ _{biogas})	0.15	0.30	0.26

Comments

Amine scrubbing studies limit their analysis to CO₂ and acid gas removal, but further **post-processing is disregarded**

- Compression of bio-CH₄
- Amine and moisture removal
- CO₂ purification and compression

КРІ	Study work	MDEA 50 wt%	Optimised MDEA
CH ₄ purity	99.99+ vol%	98 vol%	98 vol%
CO ₂ purity	99.99 vol%	Off specs	Off specs
Impurities in CH ₄ and CO ₂	Negligible	Moisture Volatile amine	Moisture Volatile amine
Electricity demand (kWh _{el} /Nm ³ _{biogas})	0.80	0.10	0.10
Heat demand (kWh _{th} /Nm³ _{biogas})	0.15	0.30	0.26

To wrap up CS3

- Biogas upgrading is a necessary step to meet specs for biomethane transport as liquid or in the natural gas grid
- Liquefaction (cryogenic process) is an alternative to valorise biogas whenever the direct injection into the NG grid is not possible
- Cryogenic purification has significant electricity consumption; however, delivers both pure CO₂ and CH₄ (and pressurized)

4.Conclusions

To wrap up

- SEMPRE-BIO identified three innovative routes to deliver biomethane starting from solid feedstocks
- The technologies deliver bio-CH₄ at different purities according to different downstream uses and needs
- The technologies found applications in different locations and sectors
- Technologies show good KPIs, and validation is still ongoing

Next steps

- Upscale the technologies (CS1 and CS2) to a significant scale, i.e., realistic for large-scale applications.
 CS3 is constrained to the digestor capacity and feedstock availability FINALISING!
- For CS2, identify in silico the **best operation point** to reduce residue tar/C_{2+} and avoid expensive biosyngas purification
- Optimise the processes based on end-user requests and/or needs to deliver bio-CH₄
- Proposing effective strategies for bio-CH₄ upgrading downstream to biomethanation for more stringent specs
- Results of the upscaled plants will be used for TEA and LCA (not in charge of SINTEF)

Funded by the European Union

Disclaimer

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or CINEA. Neither the European Union nor the granting authority can be held responsible for them.

Acknowledgements

This project received funding from the EU's Horizon Europe programme under grant agreement Nº 101084297

Filippo Bisotti Research scientist SINTEF Industry

Matteo Gilardi Research scientist SINTEF Industry

Bernd WittgensSenior advisor
SINTEF Industry

Thank you for your kind attention!

SEMPRE-BIO PROJECT

INFO@SEMPRE-BIO.COM

WWW.SEMPRE-BIO.COM

Filippo Bisotti
Research Scientist
SINTEF Industry
Process Technology
filippo.bisotti@sintef.no

