

Biopolymers and Biochemicals Production from Biogenic CO₂ Using a Novel Hybrid Fermentation System in the SEMPRE-BIO Project

Authors: J. Llimós*, J. González-Camejo, P. M. Binder, L. Paredes

BETA Technological Center, (UVic-UCC), Spain *Contact: Jordi.llimos@uvic.cat

Introduction

The **SEMPRE-BIO** project aims to develop sustainable bioprocesses that contribute to a circular bioeconomy by utilizing renewable resources and minimizing waste. A key focus is the conversion of biogenic CO₂ into **value-added products** such as **biopolymers** and **organic acids** using innovative microbial fermentation systems.

Methodology

Three configurations were evaluated as an **intensive mass transfer units** (IMTU) with potential to be coupled with the fermentation system in SEMPRE-BIO.

The transfer efficiency for each of the 3 **IMTU** was evaluated at lab-scale through the determination of the volumetric mass transfer coefficient (**KLa**). The influence of the aeration flow (0.015 to 0.25 L/min) and the liquid flow (2 to 4.7 L/h) were studied.

KLa was calculated according to Equation 1.

$$KLa = \frac{F_L \cdot DO_{SS}}{V_b \cdot (DO_{sat} - DO_{SS})}$$

[1]

where KLa is the mass transfer coefficient (1/h), FL is the liquid flow (L/h), DOss is the concentration of dissolved oxygen in stationary state (mg/L), DOsat is the concentration of dissolved oxygen in the saturation (mg/L) and Vb is the volume liquid in the IMTU (L).

Results

The capillary column showed the highest oxygen transfer efficiency (K_La up to 817 h^{-1}), while the trickling filter consistently had the lowest (K_La below 85 h^{-1}). Despite its high efficiency, the capillary column may not be suitable for pilot-scale integration due to its susceptibility to clogging from biomass, given its narrow 1-mm channels. Therefore, although it offers superior transfer for poorly soluble gases like H_2 , practical constraints limit its applicability. In contrast, the diffuser achieved a stable and adequate K_La (~200 h^{-1} under 3.5 L/h liquid flow and 0.25 L/min aeration), aligning with literature values and offering a more feasible solution for integration in hybrid fermenters aimed at biopolymer

 Production of PHA and succinic acid using a 50 L hybrid fermenter.

production from CO₂ in biogas plants.

- Valorization of biogenic CO₂.
- Valorization of digestate from cow manure.

Figure 1: Experimental comparison of the mass transfer coefficient ($K_L a$) obtained with the diffuser.

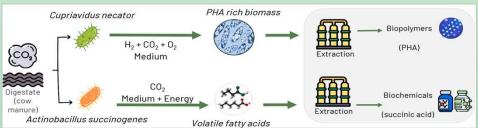


Figure 2: SEMPRE-BIO concept for efficient valorization of CO2 from biomethane streams and digestate.

Figure 3: Hybrid fermentation system for biopolymers and biochemicals production from biogenic CO2.

Acknowledgements

This work was funded by the European Union's Horizon Europe programme under Grant Agreement No. 101084297. The authors acknowledge the support of the SEMPRE-BIO consortium and the BETA Technological Center.

