

In-situ investigation of low-cost material combinations for the development of a novel PEM water electrolysis stack based on hydraulic cell compression

U. Rost, L. Engelhardt, J. Roth, M. Podleschny, N. Kazamer, M. Müller, L. C. Colmenares Rausseo, J. Horstmann de la Viña

The SEMPRE-BIO project

Case study I

Biogas via green hydrogen and CO₂-rich exhausts at the wastewater treatment unit in Baix Llobregat, Spain

The SEMPRE-BIO PEMWE

H₂ production rate 20 Nm^{3}/h About 100 kW_{el}

16 bar

10

Production pressure

Direct H₂ feed into the methanization unit

Stack temperature 80 to 90 °C For a waste heat recuperation

O₂ production rate Nm^{3}/h For a potential use in the wastewater treatment unit

Hydraulic cell compression #1

Basic principle:

- Active cell components are entirely surrounded by hydraulic medium
- This ensures homogeneous cell compression (no hot spots, any size and any number of cells possible)
- Pressure controls allow for high-pressure operation
- This ensures homogeneous waste heat transfer
- This allows for reproducible operation conditions

W02011/069625:

Vorrichtung zur Energieumwandlung, insbesondere Brennstoffzellenstack oder Elektrolyseurstack

Hydraulic cell compression #2

High-pressure electrolysis:

- Control of hydraulic media's pressure level according to inner cell pressure – always keep a pressure difference of ca. 10 bar
- Less mechanical stress on the thin polymer membranes in balanced pressure mode
- Outlet pressure is dependant on outer pressure housing and BoP components

W02014/040746: Verfahren und System zum Betreiben eines Elektrolyseurs

The SEMPRE-BIO test cell

CCM: Commercially available (N115) vs. self-prepared 1 mg_{IrOx}/cm² (N117) 0.5 mg_{Pt/C}/cm² Electrode components: PP, PTL, and GDL material was selected according to availability in 500 cm²

Results on test cell level #1

ССМ	PTL	Pole plates	U[V] @1A cm ⁻²	U[V] @ 2 A cm ⁻²	Temperature variation @ 10 bar 2 1 2.1 4 1 2.1 0.9
Com mer cial N115	Ti	A: Cu//Au+Ti; C: Cu//Au	1.70	1.91	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $
		A: Ti//Pt; C: Ti//Pt	1.72	1.92	1,4 1.75 0.2 0.1 1.75 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
		A: Ti; C: Cu//Au	1.73	1.95	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
		A: Ti; C: 316L	1.73	1.94	
	Ti//Pt	A: 316L; C: 316L	1.69	1.92	Hydraulic medium pressure level variation @ 80°C
		A: Cu//Au+Ti; C: Cu//Au	1.68	1.87	$\begin{array}{c} 1.9 \\ 1.9 \\ \overbrace{E}_{\frac{1}{2}1.7}^{1.8} \\ 1.6 \end{array} \qquad $
SEM PRE- BIO	Ti//Pt	A: Ti//Pt C: Ti//Pt	1.72	1.94	$\begin{array}{c} \stackrel{\circ}{}_{1,6} \\ \stackrel{1,5}{}_{1,5} \\ \stackrel{\circ}{}_{1,5} \\ \stackrel{\circ}{}_{1,5} \\ \stackrel{\circ}{}_{1,6} \\ $
		A: Ti//Pt C: 316L	1.70	1.92	1,4 / 0,0 0,5 1,0 1,5 2,0 i[Acm-2] -4 bar -6 bar -8 bar -12 bar - 12 bar

Reasonable performance of 2.0 A/cm² at about 1.92 V (bol) with low-cost components Gas crossover for H_2 in O_2 is far below LEL and neglectable for O_2 in H_2

Results on test cell level #2

Long-term run:

- Initial performance of about 1.92 V at 2.0 A/cm² with an initial increase after several hours of operation
- The cell voltage stabilizes at about 1.98 V maintaining a degradation rate of about 33 µV/h after 300 h
- Degradation caused by bubble accumulation is recoverable

Upscaling in progress

Conclusions

- By the aid of a novel test system with hydraulic cell clamping, test results on cell level could be reproduced in two different laboratories/test benches
- Various low-cost materials were investigated, indicating the potential use of 316L as anode and cathode PP material
- For upscaling to 500 cm², a conservative material setup was chosen that meets the necessary stack specifications
- A long-term run with Ti expended metal sheet utilized as a flow field demonstrated the advantages of a Pt coating to reduce the degradation rate
- The cell degradation varies under dynamic operation conditions
- The stack manufacture is now underway

Funded by the European Union

Acknowledgement

The research and development leading to these results have been performed within the framework of the project "Securing domestic production of cost-Effective biomethane – SEMPRE-BIO". This project has received funding from the European Union's Horizon 2020 Research and Innovation program under the Grant Agreement No. 101084297.

Thank you for your attention!

H2RAUM

Memberships

RDFRKRFIS

Westfälischen Hochschule

in Gelsenkirchen e.V.

h2-netzwerk-ruhr

l ruhr valley Hydrogen

MAT4HYN

Europe™

Piopus Bergmannsglück Str. 41-43 D-45896 Gelsenkirchen Germany Fon: +49 (0)209/589094 – 60 Fax: +49 (0)209/589094 – 99 www.propuls.de sales@propuls.de

Dr. Ulrich Rost

Mail: ulrich.rost@propuls.de

Feel free to have also a look at our booth B22.

