

Education project under the EU Erasmus+ Program 2021-2027. Jean Monnet Module

SEMPRE-BIO New cost-effective biomethane solutions to support circular economy

Alejandra Córdova Valencia

13 June 2025

WE ARE CETAQUA

A network of water technology centres based on a unique public-private collaboration model.

AREAS OF INNOVATION

We focus on five **strategic areas of innovation** designed to meet the needs of companies and territories and respond to the challenges of society, directly benefiting people and the planet.

Our areas of innovation are aligned with the Sustainable Development Goals promoted by the United Nations:

Water resource planning and management

Production and new resources

Zero waste and decarbonisation

Territorial and social sustainability

Efficient, safe and digital operation

SEMPRE-BIO at glance

Goals

- Demonstrate novel and cost-effective biomethane production solutions and pathways.
- Increase the market up-take of biomethane related technologies.
- Support circular economy.
- Reduce dependence on fossil fuels.

() terrawatt

(тмв)

NV De INVENIAM St. . Zwanebloem Naturgy

(Innolab

BIOTHANE

ProPuls

DBFZ

() SINTEF

Aigües de Barcelona

CRYO^{inox}

CETAQUA

Projected Biomethane Production Potential in Europe (2022–2050)

Potential to scale-up biomethane production

Biomethane potential of III bcm/yr in Europe in 2040

2040 Feedstock and technology selection

Source: "Biogases Towards 2040 and Beyond" (Guidehouse, EBA)

European **Biomethane** Innovation Ecosystem

Case Study I: Baix Llobregat (Spain)

Aigües de

Barcelona

\$3

CETAQUA Propuls DTU

BIOTHANE

by **Ο VEOLIA**

ТМВ

Status of Case Study I: Under construction

3

Case Study 2: Bourges (France)

Status of Case Study 2: Under construction

Case Study 3: Adinkerke (Belgium)

GENT

Status of Case Study 3: Construction finished and ready to operate

Beta

DBFZ

NV De

Zwanebloem

CRYO^{inox}

SINTEF SINTEF

Advanced technologies for efficient valorization of CO2 from biogas/biomethane streams

Beta

DTU

UNIVERSITEI1

GEN1

🕞 Innolab

DBFZ

CRYO^{inox}

Advanced technologies for efficient valorization of CO2 from biogas/biomethane streams

Technical feasibility to produce potentially marketable biopolymers, biochemicals and alternative protein sources from CO₂ demonstrated.

UNIVERSITEI1

GFN'

🕞 Innolab

DBFZ

CRYO^{ino}

Expected outcomes

Increase the cost-effectiveness of conversion in biomethane production.

Diversify conversion technologies for biomethane.

Contribute to the acceptance of biomethane technologies in the gas market.

Contribute to the demonstration on a semi-industrial scale of new conversion technologies to produce biomethane from wastewater, wood biomass and manure.

Case study [

David Checa Sánchez

Case Study I: Baix Llobregat (Spain)

Old Paradigm: Sewage Treatment Plant

New Paradigm: Biofactory

Case Study I: Baix Llobregat (Spain)

Aigües de Barcelona

₩3

ETAQ

ProPuls

by **Ο VEOLIA**

Case Study | Process diagram

Methanation vs Upgrading

Biomethane [CH₄] up to 99%

Conventional upgrading

Separating CO_2 from CH_4 and CO_2 , O_2 , H_2O_1 , H_2S_2 ... purifying (H_2S_1 , siloxanes, VOCs...)

Methanation

Addition of H_2 to biogas to convert CO_2 to CH_4 through methanogens.

```
CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O
```

	WWTP Biogás [vol.%]	Biomethane for injection [vol.%]	Biomethane for mobility [vol.%]
CO ₂ [vol.%]	30-40%	<2%	<5%*
CH ₄ [vol.%]	60-70%	>90%	>90%*
H ₂ [vol.%]	0%	<5%	<2%
H ₂ S [ppm]	5000-300	<3	<3

*For transport: CO₂+N₂+O₂ max. 5%, O₂ max. 1%, Methane number min. 70, Wobbe index below 41.9-49.0 MJ/Sm³, LHV min. 44 MJ/kg

Increase of biomethane sales (all carbon is valorized). High electrical consumption (H_2 generation) and CAPEX (electrolyzer).

Anaerobic digestion

Methanation viability and potential

Lower electrolysis costs

Use of alternative water sources

Renewable water, seawater, atmospheric water

Renewable energy peaks storage

Otherwise, it is not competitive with other technologies

Different technologies adapt to different scenarios

(Sieborg et al. 2024)

Biomethane production pathways

Case Study I: Under construction

BIOTHANE

ТМВ

Funded by the European Union

Aigües de Barcelona Propuls 🗮 🛈 SINTEF DBFZ

Thank you for your attention!

SEMPRE-BIO
SEMPRE BIO
SEMPRE-BIO PROJECT
SEMPRE-BIO PROJECT
INFO@SEMPRE-BIO.COM
WWW.SEMPRE-BIO.COM

