

Enhancing CO₂ valorization from biomethane and digestate streams to produce alternative proteins from green microalgae cultivation.

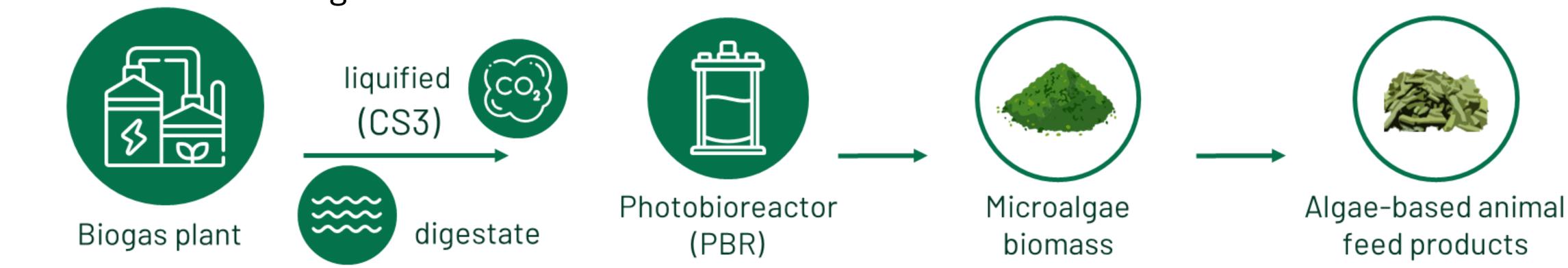
G. del Puerto-Tañà^{a,b}, L. Paredes^a, J. González-Camejo^a, M. Fernandes de Souza^b, Erik Meers^b, S. Ponsá^a

^a BETA Tech. Center (TECNIO Network), University of Vic-Central University of Catalonia (UVic-UCC), Carretera de Roda 70, Vic 08500, Spain.

^bLaboratory for Bioresource Recovery (RE-Source), Department of Green Chemistry and Technology, Ghent University, 9000 Ghent, Belgium.

Introduction

In biogas plants, CO_2 generated during biogas upgrading is released into the atmosphere, while digestates - the semisolid by-product of anaerobic digestion - require further treatment. Novel technologies for CO₂ capture and digestate treatment are necessary.


Methods

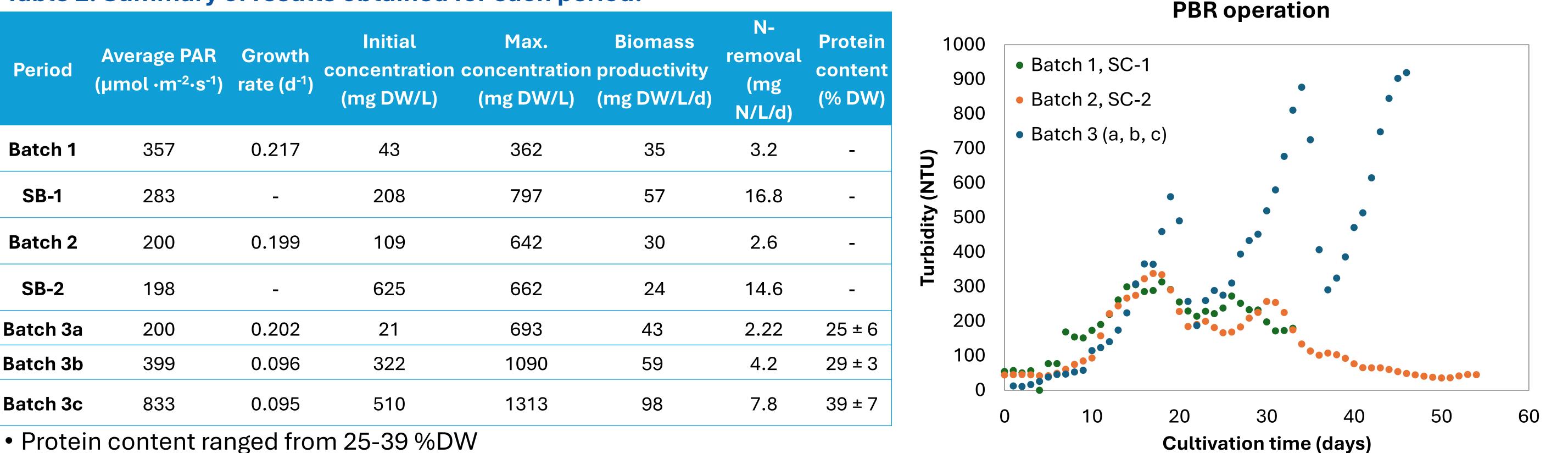
An outdoor pilot-scale photobioreactor (PBR) is operated using Parachlorella kessleri as microalgae strain, recovered CO_2 as carbon source and digestate (4%, 124 mg N-NH₄+/L) as nutrient source (Table 1). Following each cultivation periods, including batch and sequential-batch (SB) phases, microalgae biomass is harvested and characterised.

georgina.delpuerto@uvic.cat

In the **SEMPRE-BIO** project (www.sempre-bio.com), microalgae cultivation is proposed to recover CO₂ from biogas and nutrients from digestate.

Figure 2. SEMPRE-BIO process scheme.

Table 1. PBR cultivation periods.


Period	Date	Summary
Batch 1	Autum 2024	pH 8.5; mineral medium, 9 days
SB-1	Autum 2024	pH 8.5; mineral medium; HRT=7, 17 days
Batch 2	Autum 2024	pH 8.5; digestate medium (3.5%), 16 days
SB-2	Autum 2024	pH 8.5; digestate medium (3.5%), 17 days
Batch 3a	Spring 2025	pH 7.5, mineral medium, 20 days
Batch 3b	Spring 2025	pH 7.5, mineral medium, 15 days

Results and Discussion

Table 2. Summary of results obtained for each period.

Daton SD	Spring 2025	pri 7.5, millerat medium, 15 days	

Batch 3c Spring 2025 pH 8.0, mineral medium, 10 days

Conclusions

Period

Batch 1

SB-1

Batch 2

SB-2

Batch 3a

Batch 3b

Batch 3c

SEMPRE-BIO

- Growth rate values were in the range of previous lab-scale experiments (0.180 d⁻¹).
- High N-NH₄ concentration, unbalanced N/P ratios, and solid content are the main challenges to treat digestate.

Acknowledgements

Funded b

the European Union

This work is part of the SEMPRE-BIO project with funding from the European Union's HORIZON-CL5-2021-D3-03-16 program under grant agreement N^o 101084297, and by the predoctoral program AGAUR-FI ajuts (2024 FI-1 00714) Joan Oró, which is backed by the Secretariat of Universities and Research of the Department of Research and Universities of the Generalitat of Catalonia, as well as the European Social Plus Fund.