SEMPRE-BIO

Design and Assessment of a Novel Hybrid Low-Temperature Process for The Upgrading of Biogas

<u>Filippo Bisotti</u>, Matteo Gilardi, Bernd Wittgens SINTEF Industry – Process Technology

Session code 3B0.9 - Biogas in biorefineries, Tuesday, June 10th 2025

Scan the QR code Visit our webpage and subscribe the newsletter

De Panne, Belgiur

Outlines

Introduction

Role of biogas in the EU decarbonization strategy

2

Process overview

Process description and model assumption

3

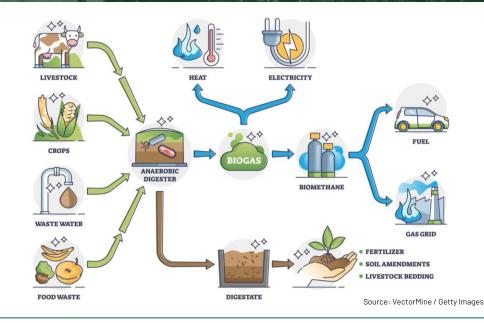
Results

Main KPIs and other comments

Conclusions

Achievements & future works

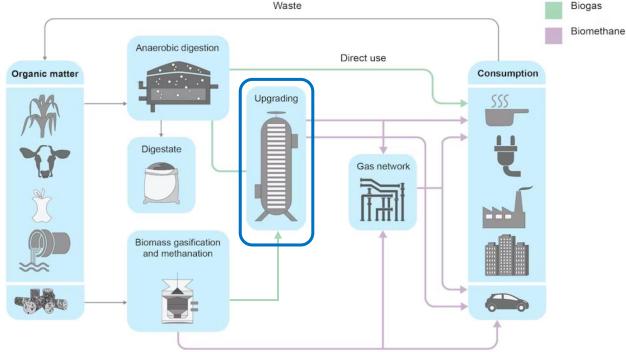
I.Introduction


Biogas production

 \bigcirc

- Mainly produced via anaerobic digestion
- CH₄ content variable from 45 to 75 vol%
- The remaining is wet CO₂ with traces of NH₃ and H₂S
- Upgrading is necessary for applications of bio-CH₄ as fuel or transport (either gas o liquid)

European Biogas Association - <u>https://www.europeanbiogas.eu/</u> IEA - <u>https://www.iea.org/reports/outlook-for-biogas-and-biomethane</u> prospects-for-organic-growth/an-introduction-to-biogas-and-biomethane



Biogas production

- Upgrading is crucial to meet specs for transport in the NG grid
- Upgrading is also relevant for liquefaction and delivery (supply chain)

SEMPRE-BIO project

- SEMPRE-BIO aims at demonstrating novel and cost-effective bio-CH₄ production solutions to support the circular economy and reduce dependence on fossil fuels
- Biomethane production tested in 3 demo plants across Europe accounting for different feedstocks

Naturgy CETAQUA Biogasplatform yoor anaerobe yeroi Сгцо Іпох ınvenıam 👧. . UNIVERSITEIT GENT ***3 terra**watt 🕤 Innolab Aigües de Barcelono seta 🚽 NV De DBFZ ТМВ Zwanebloem UVIC INIVERSITAT DE VIC ProPuls SINTEF

SEcuring doMestic PRoduction of cost-Effective BIOmethane

Total funding € 9 926 450

HORIZON-IA

Case studies

8

Aigües de Barcelona, Barcelona, Spain

Terrawatt, Marmagne, France

 De zwanebloem,

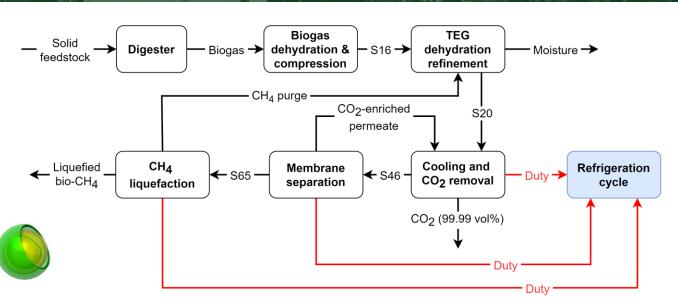
 De Panne, Belgium

Biogas upgrade and bio-CH₄ Liquefaction

 $Bio-CH_4$ synthesis/production

Source: SEMPRE-BIO webpage

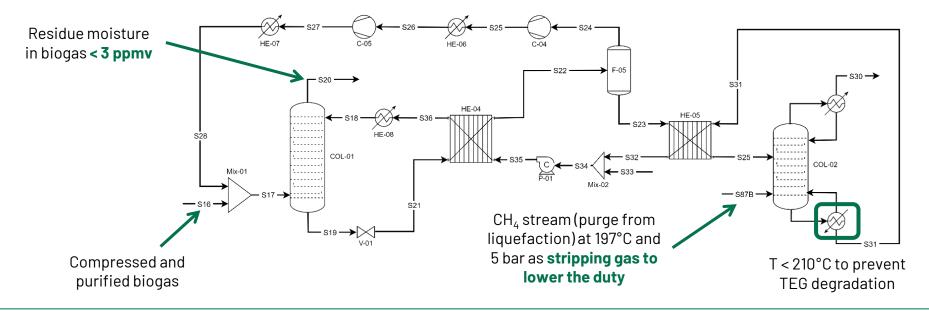
2.Process



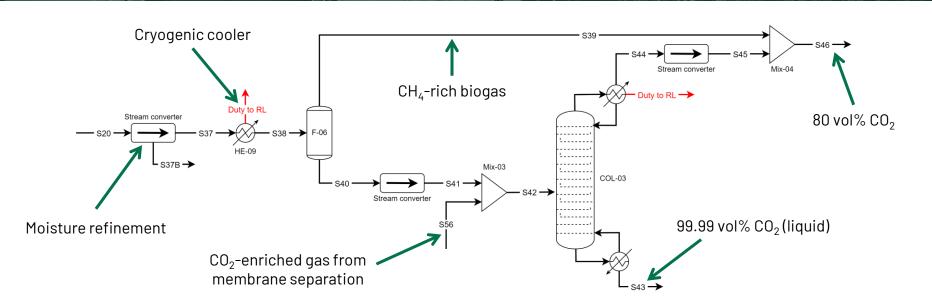
Block Flow Diagram

 \bigcirc

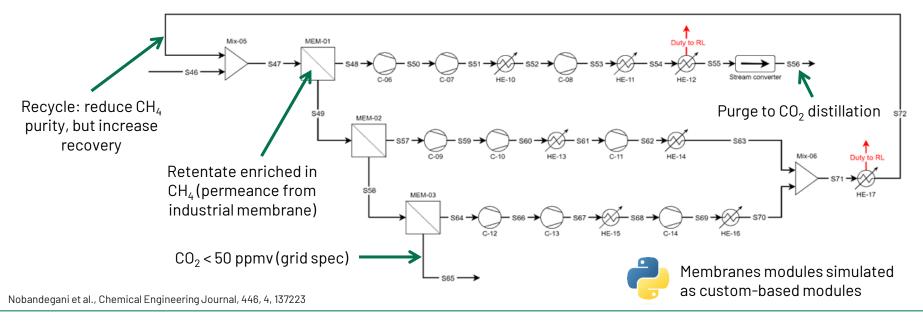
- Upgrading and liquefaction of bio-CH₄
- Application for transport of bio-CH₄ delivery in the absence of surrounding infrastructure (e.g., farms and remote biogas sites)
- Simulation in COFE V3.6, license-free simulation software by AmsterChem



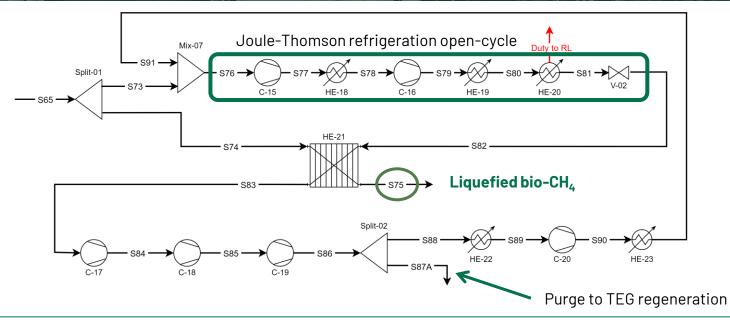
TEG dehydration



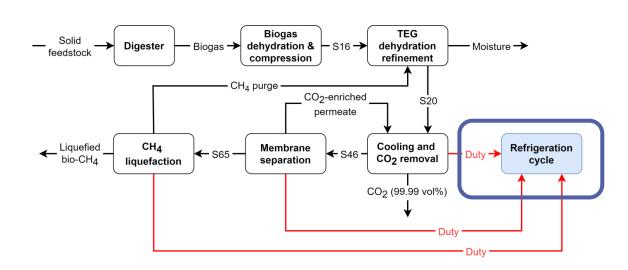
CO₂ removal



CO₂ refinement



CH₄ liquefaction



Cold box

- Cold box temperature is kept through an external refrigeration loop based on a Joule-Thompson cycle
- Working fluid is a mixture of C₂:C₃ hydrocarbon at 92:8 on a mass basis
- Pressure drop across the lamination valve is 45 bar

15

3.Results

Input data

- Manure is the solid feedstock
- Produced biogas is a sensitive info
- Biogas composition (used for the simulation)

CH ₄	57.5 vol%
CO ₂	39.5 vol%
Moisture	~ 3.0 vol%
H_2S/NH_3	~ 200 ppmv

Utilities

Electricity

Compressors Pumps Refrigeration loop Air cooler

Cooling water

Heat exchanger (interstage cooling) Top condenser chiller Reboiler of CO₂ distillation

Heat (steam) TEG regeneration

Session code 3B0.9 – Biogas in biorefineries, Tuesday, June 10th 2025 Presenter – Filippo Bisotti (SINTEF Industry)

18

Results (KPIs)

Key Performance Indicator	Value	Note
CH ₄ recovery (before liquefaction)	96.0%	Basis: mass flow bio-CH ₄ in biogas from anaerobic digester Purity 99.99+ vol%
CH ₄ liquefied	91.2%	After liquefaction cycle
CO ₂ recovery	80.6%	Basis: bio-CO ₂ in biogas from anaerobic digestor As liquid at 99.99 vol% purity

Results (KPIs)

Key Performance Indicator	Value	Note
Electricity demand	3.10 kWh _{el} /kg _{CH4 liq} 1.19 kWh _{el} /Nm ³ _{biogas}	Normal condition: 1 bar and 0°C
Heat demand	0.38 kWh _{th} /kg _{CH4 liq} 0.15 kWh _{th} /Nm ³ _{biogas}	
Steam demand	0.76 kg/kg _{CH4 liq} 0.29 kg/Nm ³ _{biogas}	Saturated steam at 225°C (25 bar)
Cooling water demand	196.2 kg/kg _{CH4 liq} 75.6 kg/Nm ³ _{biogas}	Assuming CW at 20°C and max discharge temperature 30°C

Comparison

КРІ	Study work (no liquefaction)	MDEA 50 wt%	Optimised MDEA
CH ₄ purity	99.99+ vol%	98 vol%	98 vol%
CO ₂ purity	99.99 vol%	Off specs	Off specs
Pressure(bar)	Sensitive	2	2
Impurities in CH ₄ and CO ₂	Negligible	Moisture Volatile amine (limit 10 mg/Nm³)	Moisture Volatile amine (limit 10 mg/Nm³)
Electricity demand	0.80 kWh _{el} /Nm ³ _{biogas}	0.10 kWh _{el} /Nm ³ _{biogas}	0.10 kWh _{el} /Nm³ _{biogas}
Heat demand	0.15 kWh _{th} /Nm ³ _{biogas}	0.30 kWh _{th} /Nm ³ _{biogas}	$0.26 kWh_{th}^{}/Nm_{biogas}^{3}$

MDEA 50 wt%: Pellegrini et al., Chemical Engineering Transaction, 43, 409-414 Optimised MDEA: Capra et al., Energy Procedia, 148, 970-977

Comments

 \bigcirc

- Cryogenic process delivers far purer CH₄ and CO₂ without moisture and potential corrosive amines
- Amine scrubbing studies limit their analysis to CO₂ and acid gas removal, but further purification is disregarded
- Energy demand exponentially increases as purity specs becomes strict and imposes limitations on which pollutants (and how much is tolerated)

KPI	Study work	MDEA 50 wt%	Optimised MDEA
CH ₄ purity	99.99+ vol%	98 vol%	98 vol%
CO ₂ purity	99.99 vol%	Off specs	Off specs
Impurities in CH ₄ and CO ₂	Negligible	Moisture Volatile amine	Moisture Volatile amine
Electricity demand (kWh _{el} /Nm ³ _{biogas})	0.80	0.10	0.10
Heat demand (kWh _{th} /Nm ³ _{biogas})	0.15	0.30	0.26

Comments

Amine scrubbing studies limit their analysis to CO_2 and acid gas removal, but further **post-processing is disregarded**

- Compression of bio-CH₄
- Amine and moisture removal
- CO₂ purification and compression

КРІ	Study work	MDEA 50 wt%	Optimised MDEA
CH ₄ purity	99.99+ vol%	98 vol%	98 vol%
CO ₂ purity	99.99 vol%	Off specs	Off specs
Impurities in CH ₄ and CO ₂	Negligible	Moisture Volatile amine	Moisture Volatile amine
Electricity demand (kWh _{el} /Nm ³ _{biogas})	0.80	0.10	0.10
Heat demand (kWh _{th} /Nm ³ _{biogas})	0.15	0.30	0.26

4.Conclusions

To wrap up

- Biogas upgrading is a necessary step to meet specs for biomethane transport as liquid or in the natural gas grid
- Liquefaction (cryogenic process) is an alternative to valorise biogas whenever the direct injection into the NG grid is not possible
- Cryogenic purification has significant electricity consumption; however, delivers both pure CO₂ and CH₄ (and <u>pressurized</u>)

 \bigcirc

25

Disclaimer

"Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or CINEA. Neither the European Union nor the granting authority can be held responsible for them."

Funded by the European Union

26

Acknowledgements

This project received funding from the EU's Horizon Europe programme under grant agreement Nº 101084297

Filippo Bisotti Research scientist SINTEF Industry

Matteo Gilardi Research scientist SINTEF Industry

Bernd Wittgens Senior advisor SINTEF Industry

Thank you for your kind attention!

Filippo Bisotti <u>filippo.bisotti@sintef.no</u>

