SEMPRE-BIO

Design of a novel process for biomethane production via thermochemical conversion of woody biomass

GREEN 2024 Conference agreb, Croatia)

Matteo Gilardi, Filippo Bisotti, Bernd Wittgens (SINTEF, Norway)

Introduction

Biomethane production protects the environment by recycling organic waste streams into renewable energy, while simultaneously reducing GHG emissions.

The main challenges are:

decrease investment and operational costs
 optimize feedstock supply and use
 identify alternative and cheaper feedstocks
 improve plant efficiency and operations
 monetize co-benefits from the commercialization of side-products.

een techno

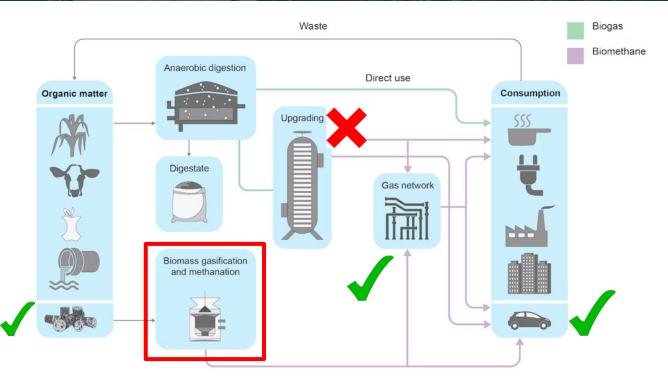
Biomethane production

- Over 95% of biomethane is currently produced via anaerobic digestion of organic matter/waste [1].
- Raw biogas methane content ranges from 45% to maximum 75% [2], the remaining part is mainly CO₂

resources green technolog & sustainable

5

- Biogas must undergo upgrading (CO₂ removal) to meet the target purity and heating value.
- The upgrading step is highly-energy intensive


[1] European Biogas Association. Accessed: Jul. 09, 2024. [Online]. Available: https://www.europeanbiogas.eu/

[2] An introduction to biogas and biomethane – Outlook for biogas and biomethane: Prospects for organic growth – Analysis, IEA. Accessed: Jul. 09, 2024. [Online]. Available: https://www.iea.org/reports/outlook-for-biogas-and-biomethane-prospects-for-organic-growth/an-introduction-to-biogas-and-biomethane

Novel pathways to biomethane

- Diversifying feedstock is crucial to increase the biomass availability, address waste management issues, and enhance the circular economy in different geographical contexts.
- Thermal gasification of solid biomass followed by methanation is a promising alternative

٠

Natural resources green technology & sustainable

5 See al

The SEMPRE-BIO project

SEMPRE-BIO is an EU project targeting the **demonstration of** novel and **cost-effective biomethane production solutions** to support **circular economy** and **reduce dependence on fossil fuels**.

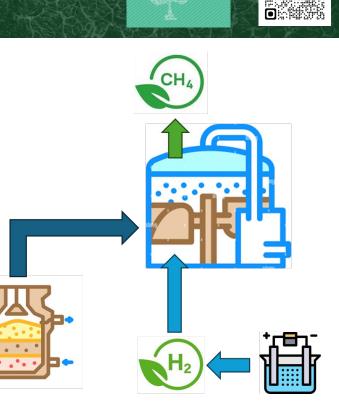
5 innovative biomethane production technologies will be tested in 3 plants through Europe.

International consortium with partners from research institutes, industry, academia, end-users and farmers.

green technolo 9 sustainable

Aim of the work

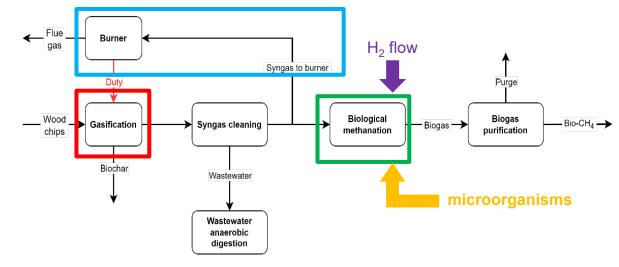
This work deals with


- (1) process design
- (2) modelling
- (3) evaluation of key Performance Indicators (KPIs)

for the **upgrading of syngas** obtained **through lignocellulosic biomass gasification** via **microorganisms-driven methanation**

External green H₂ is added to improve carbon conversion in the methanation reactor

Plant capacity: 150 kg/h of green waste feedstock



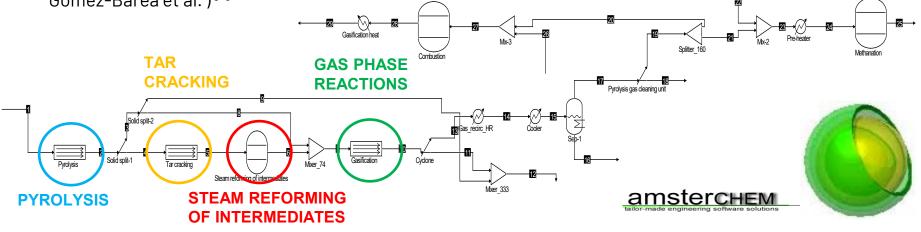
green technolo 9 sustainable

Assumptions for gasification

- Biomass composition shared by TERRAWAT
- Gasification chamber operates at a constant temperature of 725°C
- Autothermal gasification (temperature is maintained by recycling and burning 1/3 of the produced syngas)
- The **remaining syngas flow** (2/3) is conveyed to **bio-methanation**
- External H₂ is added to achieve the optimal H:C ratio for methanation
- Methanation uses thermophilic organisms (operation at 55°C)

resources green technology & sustainable

5 240 M


Modelling approach: gasification

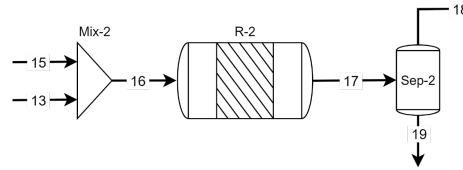
Rigorous model for gasification implemented in COCO-COFE (license-free process simulator)

- 1. Pyrolysis (lumped kinetic model by Ranzi et al., 2017)¹
- 2. Tar cracking reactions (kinetic model by Chen et al., 2021)²
- 3. Steam reforming of intermediates (conversion-based data-driven model)
- **4. Gas-phase secondary reactions** (kinetic model by Chaurasia, Groeneweld, Gomez-Barea et al.)³⁻⁵

green technolog & sustainable

Gasification model validation

The **model** is **validated to the experimental data** shared from a **pilot facility** owned by AEnergy.


resources green technology & sustainable

5 ter so Decent 2028 ZAGRE

Dry wt% composition	Deviation
CO	3.79%
CO_2	3.43%
H ₂	3.06%
ĊĤ₄	53.5%
C1+C2 hydrocarbons	13.7%
Humidity	4.28%
Char	0.01%

CS2: bio methanation reactor model

- > Bio-methanation of CO and CO₂ is modelled using a soft model retrieved from the literature [1].
- No validation to in-house project data has been performed so far.

 $CO + 3 H_2 \rightarrow CH_4 + H_2O$ $CO_2 + 4 H_2 \rightarrow CH_4 + 2 H_2O$ $4 CO + 2 H_2O \rightarrow CH_3COOH + 2 CO_2$

5

The degree of advancement of the three reactions has been tuned to meet the following targets:

- all the CO is consumed (limiting reactant);
- the purity of the produced biomethane is 95 vol% on a dry basis [1];
- the acetic acid accumulating in the product stream is 1.5 dry vol% (stoichiometric $H_2/CO/CO_2$ ratio) [1].

Results

KPI	Value
Thermal energy for gasification [kW]	113 (3.8 MJ/kg dry feedstock)
External H ₂ demand [kg/h]	5.92 (60 g/ kg dry feedstock)
Biomethane productivity [kg/h]	21.2 (210 g/ kg dry feedstock)
Biomethane purity	96.5 vol%
Impurities	3 vol% CO ₂ 0.2 vol% ethane and ethylene ppm vol% of CO and H ₂

Natural resources green technology & sustainable development

Innovation and relevance

INNOVATION

- Autothermal process via syngas recycling
 - Non-fermentable green waste valorization
 - No catalyst needed
- Substantial lowering of operating temperature (from >300°C down to 55°C)
 - Improvement of circularity

IMPACT

green technolo

- Accelerate commercial-scale
 development across Europe
- Decentralized energy source for local communities
- Cooking fuel for developing countries
 - Make EU energy self-sustained
 - Side **production** of **bio-char**, (energy supply from green origin)

Conclusions and future developments

• Key milestones in conceptual development and preliminary feasibility assessment (modelling, KPIs estimation) achieved for a novel biomethane production pathway.

reen technol

- The novel process does not require any external heat source
- Hydrogen is the main raw material input the main expected OPEX for the plant
- The **residual CO₂ content** (3 vol%) in the produced biomethane **reaches the limit** allowed in **natural gas grids** (typically 2-3 vol%)
- **Results** from this preliminary study will be used as a **basis** to perform a detailed **comparative economic and life-cycle assessment**.

Acknowledgements

This project has received funding from the European Union's Horizon Europe programme under grant agreement N° 101084297

Natural resources green technology & sustainable

5 Sector

Funded by the European Union

•

▣

Matteo Gilardi Research Scientist SINTEF Industry

Filippo Bisotti Research Scientist SINTEF Industry

Bernd Wittgens Senior Advisor SINTEF Industry

Thank you!

