

Biomethaverse Project Workshop Nov. 30, 2024 Barcelona, Spain.

SEMPREBIO: SEcuring doMestic PRoduction of cost-Effective BIOmethane

Funded by the **European Union**

Disclaimer

"Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or CINEA. Neither the European Union nor the granting authority can be held responsible for them."

Pioneering public - private partnership model

Main activities

1. R&D

Water resource management

Bio factory and resource recovery

Critical infrastructure managementand resilience

Environmental, economic and social sustainability

 $Wa\,te\,r\,\,4.0$

2. KNOWLEDGEBASED SERVICES

3. DIGITAL SERVICES

+450

+100

Privately funded projects

Publicly funded projects

SEMPR-BIO at glance

Goals

- Demonstrate novel and cost-effective biomethane production solutions and pathways.
- Increase the market up-take biomethane related technologies.
- Support circular economy.
- Reduce dependence on fossil fuels.

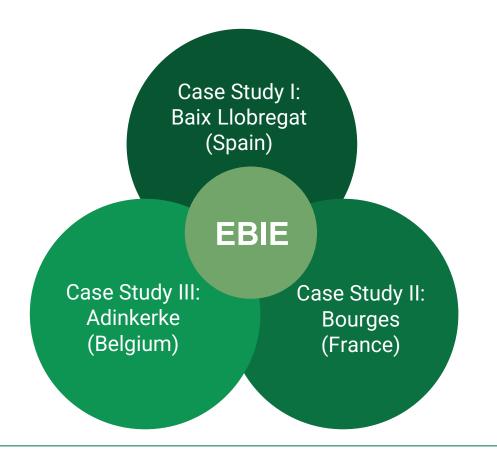
Numbers

42 Months

Partners

Countries

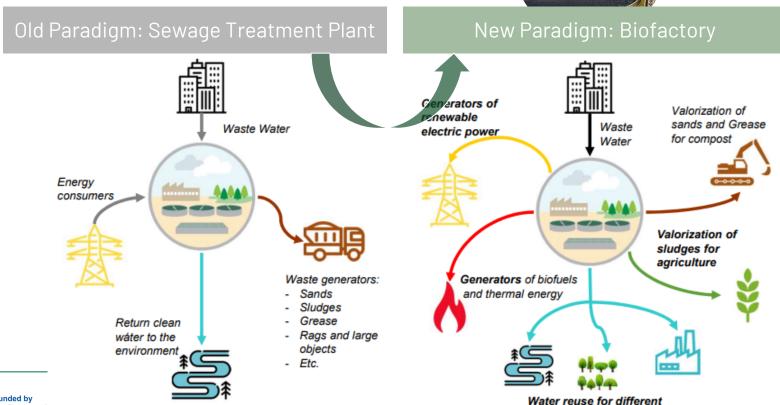
9.9 M **Funding**



European Biomethane Innovation Ecosystem

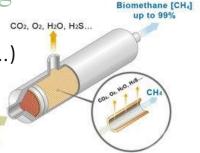
Case Study 1: Baix Llobregat (Spain)

Final use of Technology Feedstock Site biomethane Wastewater CO2 Electrolysis Case Study 1: Compression to CNG Biomethanation El Prat de LI(ES) for public transportation



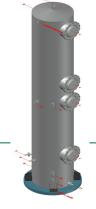
Case Study 1: Baix Llobregat (Spain)

uses



Metanation vs Upgrading

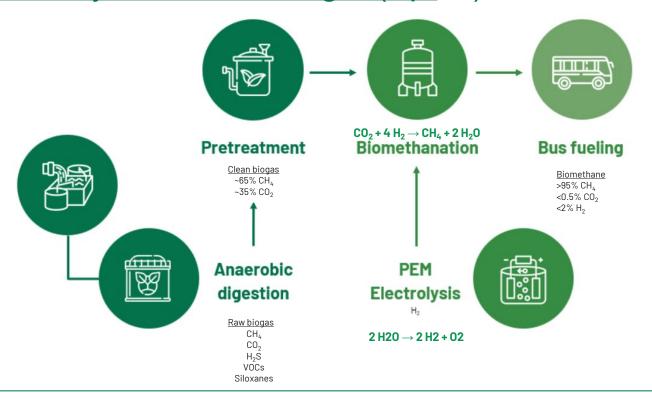
Conventional upgrading


Separating CO_2 from CH_4 and purifying $(H_2S, siloxanes, VOCs...)$

	WWTP Biogás [vol.%]	Biomethane for injection [vol.%]	Biomethane for mobility [vol.%]
CO ₂ [vol.%]	30-40%	<2%	<5%*
CH ₄ [vol.%]	60-70%	>90%	>90%*
H ₂ [vol.%]	0%	<5%	<2%
H ₂ S [ppm]	5000-300	<3	<3

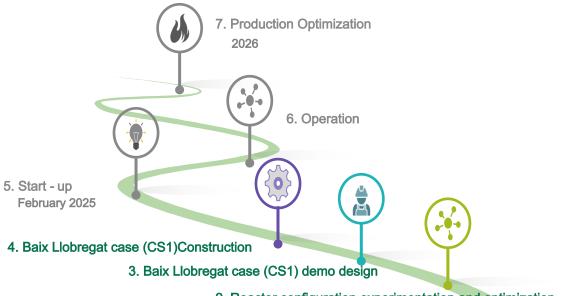
Methanation

Addition of H_2 to biogas to convert CO_2 to CH_4 through methanogens.

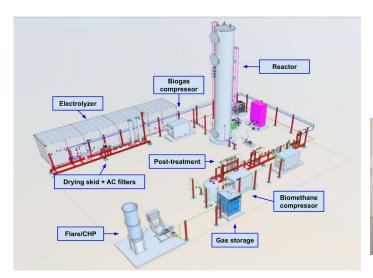

*For transport: $CO_2+N_2+O_2$ max. 5%, O_2 max. 1%, Methane number min. 70, Wobbe index below 41.9-49.0 MJ/Sm³, LHV min. 44 MJ/kg

Increase of biomethane sales by 50-80% (all carbon is valorized). High electrical consumption (H_2 generation) and CAPEX (electrolyzer).

Case Study 1: Baix Llobregat (Spain)



Biomethanation Demoplant


2. Reactor configuration experimentation and optimization

Status of Case Study 1 Construction

Case Study 2: Bourges (France)

Feedstock

Technology

Site

Final use of biomethane

Green waste from the city of Bourges

Pyrolysis

CO
Methanation

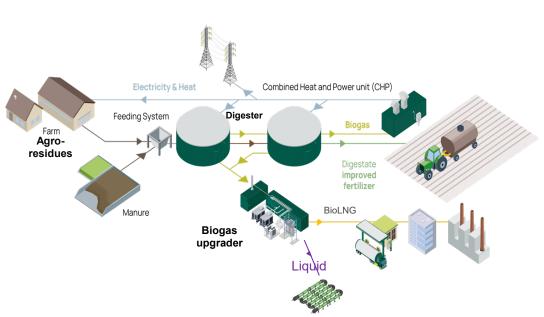
Case Study 2:
Bourges (FR)

Grid injection

Status of Case Study 2 Construction

Case Study 3: Adinkerke (Belgium)

Final use of Technology Feedstock Site biomethane Cattle manure and Case Study 3: Cryo Stored locally organic biological waste TBD(BE) separation as co-substrate



Status of Case Study 3 Construction

Expected outcomes

- Increase the cost-effectiveness of conversion in biomethane production.
- 02 Diversify conversion technologies for biomethane.
- Contribute to the acceptance of biomethane technologies in the gas market.
- Contribute to the demonstration on a semi-industrial scale of new conversion technologies to produce biomethane from wastewater, wood biomass and manure.

- in <u>SEMPRÆIO</u>
- **SEMPRE BIO**
- SEMPRE-BIO PROJECT
- ✓ <u>INFO@SEMPRE-BIO.COM</u>
- **WW.SEMPRE-BIO.COM**

