Webinar Blo-Inpact 2 Years of Innovation in Biomethane Production with SEMPRE-BIO

Disclaimer

"Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or CINEA. Neither the European Union nor the granting authority can be held responsible for them."

Funded by the European Union

Webinar Blo-Impact

Schedule

• SEMPRE-BIO Project and Objectives overview

• Three Case Study Presentations

- Insights into CO2 valorization techniques
- Q&A session with our expert panel

Webinar Blo-Impact

SEMPRE-BIO Presentation

with Alejandra Cordova

Project Manager | Sustainability Certifications

CETAQUA CENTRO TECNOLÓGICO DEL AGUA

Naturgy

(Innolab

BIOTHANE

SEMPRE-BIO at glance

Goals

- Demonstrate novel and costeffective biomethane production solutions and pathways.
- Increase the market up-take of biomethane related technologies.
- Support circular economy.
- Reduce dependence on fossil fuels.

Projected Biomethane Production Potential in Europe (2022-2050)

Potential to scale-up biomethane production

Biomethane potential of III bcm/yr in Europe in 2040

2040 Feedstock and technology selection

Source: "Biogases Towards 2040 and Beyond" (Guidehouse, EBA)

European **Biomethane** Innovation Ecosystem

Case Studies

SEMPRE-BIO Progress Overview

Expected outcomes

Increase the cost-effectiveness of conversion in biomethane production.

Diversify conversion technologies for biomethane.

Contribute to the acceptance of biomethane technologies in the gas market.

Contribute to the demonstration on a semi-industrial scale of new conversion technologies to produce biomethane from wastewater, wood biomass and manure.

Expected impacts

Biomethane as a substitute for imported LNG.

Biomethane as a fuel substitute in transportation.

Reduction of CO_2 by 213 million tons/year by 2050.

Diversify energy sources and new routes.

Reduce the need for strategic reserves.

Smaller extension of critical infrastructure to protect.

Thank you for your attention!

SEMPRE-BIO
SEMPRE BIO
SEMPRE-BIO PROJECT
INFO@SEMPRE-BIO.COM
WWW.SEMPRE-BIO.COM

Webinar Blo-Impact

Case Study I

with David Checa Sánchez

Doctoral Researcher

CETAQUA CENTRO TECNOLÓGICO DEL AGUA

Power-to-gas

[1] Sieborg, M. U., Engelbrecht, N., Ottosen, L. D. M., & Kofoed, M. V. W. (2024). Sunshine-to-fuel: Demonstration of coupled photovoltaic-driven biomethanation operation, process, and techno-economical evaluation. *Energy Conversion and Management*, 299, 117767. https://doi.org/10.1016/j.enconman.2023.117767

Power-to-gas

[2] Thapa, A., Jo, H., Han, U., & Cho, S. K. (2023). Ex-situ biomethanation for CO2 valorization: State of the art, recent advances, challenges, and future prospective. Biotechnology Advances, 68, 108218. https://doi.org/10.1016/J.BIOTECHADV.2023.108218

Power-to-Gas concept

Technology design

Trickling bed reactor (TBR)

- 3 phases
- Maximum mass transfer

• To treat up to 15.1 Nm³/h of biogas

• Progressive adaptation of the biofilm

• Biomethane to comply with norm

- Remove impurities (H_2S , siloxanes, VOCs)
- Correct dew point

Liquid recirculation

- pH and nutrient concentration control
- Temperature control

• Packing material

- HDPE pall rings
- Reactor pressure range
 - o 3-8 barg
- Thermophilic temperature
 - 55°C

Construction advancements

- Detailed engineering is taking place
- PEMEL construction ongoing
- To begin operation in February

Construction advancements

Thank you for your attention!

SEMPRE-BIO
SEMPRE BIO
SEMPRE-BIO PROJECT
INFO@SEMPRE-BIO.COM
WWW.SEMPRE-BIO.COM

Webinar Blo-Impact

Case Study 2

with Arthur Lacaine

Growth and Strategy

() terrawatt

Location

Located at Marmagne near Bourges, at the center of France

Surrounded by:

- Anaerobic Digestion plant
- Solar Panel farm
- Cereal Crops
- Green Waste Storage
- Composting Area
- Gas Grid Injection Point

Process Description

Process Description

Technological Partners:

Technical University of Denmark Laboratory Optimization of the Biological Methanation process

Norvegian Foundation for scientific and industrial reasearch Business models assays and Full Scale modelling

Economic Developpement Partners:

French start-up developping pyrolysis and biological methanation process

In charge of developping the coupling process and the demonstration plant in Marmagne

German Biomass Research Center

Full Scale simulation of technological potential Study of the use of biomass for energy at EU scale

Process Description

Biomass used in the process

Green Waste residues from Marmagne after composting

Biomass used in the process

Biomass need to be shredded before being used in the pyrolysis process

50mm particles Rocks/metals separation On site shredding with a project partner

Process Description

Biochar

Funded by the European Union

Biological Methanation

GENERAL DESCRIPTION

Methanogenous micro-organisms are able to transform the syngas (pyrolysis gas) into biogas in controlled conditions.

Terrawatt's Pilot unit

Reactor configuration Experimentation and optimization by DTU

Reactor configuration

DTU had a large impact regarding process design and bioreactors configuration.

- 1/ Selection of the reactor configuration
- 2/ Selection of the matrix (microbial growth)
- 3/ Optimization of parameters (Liquid/gas flows)

4/ Optimization of Biological process (Temperature, nutrients, micro-organisms)

Here is a comparison between two reactor type (bubbles and trickle bed)

Reactor configuration Experimentation and optimization by DTU

Reactor configuration

Syngas analysis in progress

Follow our next steps by registering our Newsletter!

3D model of the experimental site

3D model of the experimental site

Thank you for your attention!

SEMPRE-BIO
SEMPRE BIO
SEMPRE-BIO PROJECT
INFO@SEMPRE-BIO.COM
WWW.SEMPRE-BIO.COM

Webinar Blo-Impact

Case Study 3

Çağrı Akyol

Postdoctoral Project Manager

UNIVERSITEIT GENT

Andrea Munaretto

Strategy & Business Development, M&A Post-Merger Integration

Fiorentini

Downscaling a biogas upgrading solution

Integrating biomethane upgrading technology in downscaling and retrofitting scenarios

The potential and feasibility of downscaling a biogas upgrading solution (cryogenic solution) to produce BioLNG and Liquid CO₂ from biogas at farm-scale

- There are about 8,000 farms 35% of all the farms in the Flemish region. 200,000 hectares 63% of the province's total surface area is used for agriculture and horticulture.
- More than half of all pigs, one third of all cattle and chickens, half of all potatoes and two thirds of all vegetables grown outdoors in the Flemish region come from the province of West Flanders.

MASSCHELEYN dairy farm, Adinkerke, BE

- A dairy farm, with a biogas permit for processing 25.000 t/y of cattle manure together with 5.000 t/y of co-substrate
- Plant operational for about 8 months
- No. 2 digesters: first mesophilic, then thermophilic (post-digestion)
- Processing manure from 900 cows, mixing and sending to digesters
- Digestate to be transported to France
- Permit and installation of the biogas upgrading demo plant in Q1/2025

First things first -

Ensure continuous
feedstock supply
Know your feedstock
and their BMP

- Conduct a preliminary study (lab- and pilotscales)

Feedstock characterization & BMP tests

- Tested feedstock: manure, potato waste, residual yeast concentrate, and their combinations.
- Potato waste is not practical; preference shifted to manure and yeast concentrate.
- Laboratory BMP tests assessed biogas production from these feedstock.

Feedstock	рН	pH EC (mS/cm)		Moisture content (%)		Dry weight content (%)		Volat (%fre	Volatile solids (%fresh matter)		Fixed solids (%fresh matter)	
Manure	6.95		17.53		88.73		11.27			9.50		1.78
Yeast conc.	3.45		11.18		73.29		26.71			24.38		2.33
Potato waste	-				78.2		22.6			21.62		-
Feedstock	Total	N (%)	Total	C (%)	Total org	anic C (%	6) Tota	l inorga	unic C (%)	C/N		
Manure	2.52		38.8	38.8		38.8		0		15.4		
Yeast conc.		4.83		43.7		4:	3.7				9.0	
Feedstock	Total	N (%)	Total	P (%)	Total K (%)						
Manure		2.52		0.5		2.6						
Yeast conc.		4.83		1.2		3.1						
							Cr(VI)					
Feedstock	Salmo.	nella .	E. coli (MPN/g)	Biuret	(mg/kg)	(mg/kg)					
Manure		ND		95000.0		< 10.0		< 0.11				
Yeast conc.												

Substrate	DM (%)	ODM (%)	 Biogas potential (Nm³/ton FM) 		Biomethane potential (Nm³/ton FM)		Biomethane potential (Nm³/ton ODM)	
Manure	10.92	9.07	39.5		24.8		273.9	
Potato waste	22.60	21.62	173.3		114.7		530.7	
Yeast conc.	27.20	24.70	118.5		72.5		293.6	
Manure + potato (5:1)	12.86	10.95	56.5		35.9		327.6	
Manure + yeast conc. (5:1)	13.57	11.37	54.9		32.8		288.8	
Substrate		CH₄ (%)		CO ₂ (%)		H₂S (ppm)	
Manure		62.9		31.4		246		
Potato waste		66.2		27.3		99		
Yeast conc.		61.2		22.2		1119		
Manure/potato	5:1)	63.5		30.4		142		
Manure/yeast co	onc. (5:1)	59.8		27.5		2128		

One step closer... Pilot-scale anaerobic digestion tests

Mimicking the operating conditions of the farm-scale anerobic digesters:

- 2 72L CSTR's
 - Digester 1: Mesophilic conditions (38°C),
 - Digester 2: Thermophilic conditions (52°C)
- HRT: 28 days
- Mono-digestion of manure for 4 HRTs, then added yeast concentrate (5:1) for 2 HRTs
- Affirmative effect of the thermophilic post-digestion (higher biogas yield, increased digestate quality)
- High H_2S in the biogas \bigwedge

• Co-digestion of **manure and yeast** showed higher (x 1.6 times) and more stable biogas production compared to mono-digestion of manure

Up and running! Farm-scale anaerobic digesters

- 80 m³ manure/day + 2 tons corn cob mix
 - Mesophilic digester (40°C)
 - Thermophilic digester (52°C)
- 110 m³ of biogas/hour
- Biogas composition
- Mesophilic digester: 55% CH₄, 2130 ppm H_2S (goes down to 1000ppm after activated carbon)
 - Thermophilic digester: 50% CH₄, 75 ppm H_2S

Biogas and biomethane by-products: digestate and liquid CO₂

- The resulting digestate is used for microalgae and purple bacteria cultivation (together with liquid CO₂) in Belgium and as organic fertilizer in France.
- Digestate characterization according to the Products Function Categories of the Fertilising Products Regulation (EU)2019/1009.
- Macronutrients (N, P, K) and micronutrients are adequate.
- Metal content generally meets the limits, except for higher iron concentration.
- No pathogens in the digestate
- Food-grade

Demo plant

De zwanebloem, De Panne, Belgium

Purpose

Leveraging advanced cryogenic

technology to explore (and demonstrate in a relevant environment) the potential downsizing of a solution capable of producing BioLNG and Liquid CO2 from raw Biogas with integrated cleaning process, sized at 50 Nm3/h, for applications at the farm-scale digestion level; and the **promoting cleaner energy solutions**

The Case Study focuses on a dairy farm in Belgium, with a biogas permit for processing 25,000 tons per year of cattle manure (from approximately 1400 cows) together with 5,000 tons per year of co-substrate.

Carbon footprint reduction

Under REDIII, the goal is to reduce greenhouse gas emissions by capturing CO₂ from biomass to replace fossil-based CO₂, prioritizing biofuels, bioliquids, and biomass fuels to achieve significant carbon footprint reduction.

Reduction Target	Due date	Target g CO ₂ eq/MJ		
50%	October 5, 2015	47,0		
60%	December 31, 2020	37,6		
70%	December 31, 2025	28,2		
80%	from January 1, 2026	18,8		

For biomass fuels used in the transportation, the reference fossil fuel value shall be: **94 g C0 eq/MJ.**

Focus on quality, but also efficiency:

RED III directive (Renewable Energy Directive), officially known as Directive (EU) 2023/2413 of the European Parliament and of the Council of 18 October 2023 amending Directive (EU) 2018/2001, Regulation (EU) 2018/1999 and Directive 98/70/EC as regards the promotion of energy from renewable sources, and repealing Council Directive (EU) 2015/652

Test bench

CO2 capture Membranes & Cryopolish tests

Test bench aimed at testing the cryogenic capture of CO2 in a Bio Methane stream:

- Testing of Membranes operation
- Testing of Cryopolish operation
- Testing of 2 compositions: 20% CO2 & 1% CO2
- Target: Achieve a CO2 level below 100 ppm

Demo Plant

- **GROUP 1:** H2S removal , Biogas Compression & Dehydration
- **GROUP 2:** Cryogenic cleaning and Upgrading
- **GROUP 3:** Methane Liquefaction

Highlights

Optimized Integrated System: This system directly converts biogas into two valuable liquid products— biomethane and food-grade CO₂.

Quality and Efficiency: A solution that ensures foodgrade quality CO₂ while optimizing CAPEX and OPEX costs, strengthening the business case.

Value of Renewable CO₂: With government support for renewable CO₂ as a fossil CO₂ substitute, its price is expected to rise, boosting the value of liquid biomethane and creating opportunities to sell certificates.

Next Steps

- Delivery, Installation and Startup of the Demo Plant
- Focus on microalgae cultivation on digestate and (recovered) CO2 (Lab and pilot-scale) in WP4
- Study towards further business case optimization by addressing biogas & biomethane based by-product costs (and valorisation)

Thank you for your attention!

SEMPRE-BIO
SEMPRE BIO
SEMPRE-BIO PROJECT
INFO@SEMPRE-BIO.COM
WWW.SEMPRE-BIO.COM

Webinar **Blo-Impact**

CO2 valorisation from biogas streams

Beta Biodiversitat, Ecologia, Tecnologia Ambientali Alimentaria

Marcella Souza

Postdoctoral researcher and Project Manager

UNIVERSITEIT GENT

CO₂ conversion into valuable products

Funded by the European Union

Selection of biochemicals and biopolymers to be produced

Selection of the microbial strains

Production of biopolymers at lab-scale

Microbial strain and substrate

- High PHA/PHB content (60 90%)
- CO₂ as the main carbon source
- PHA/PHB of CDM (cell dry matter)
- High productivity (1.97 g/L/h)

Operational conditions

- 30°C , 180 rpm, 2 days, pH₀: 7
- Injection of CO₂, H₂ and air in 1 L bottles
- Synthetic growing medium vs. digestate's liquid fraction

Gas bags and their linkage to the reactors within a controlled temperature shaker environment

Production of biopolymers at lab-scale

Production of succinic acid at lab-scale

Microbial strain and substrate

Actinobacillus Digestate's liquid fraction succinogenes

- Acetate (0.14-0.20 g/g) and formate (0.08-0.13 g/g) as main byproducts
- Biogenic CO_2 sparging as C-source

Operational conditions

- 150 mL 1 L bottles
- Synthetic growing medium vs. digestate
- 37°C , 150 rpm, 2-7 days
- Initial purge with CO_2

- Succinic acid lab trial production in anaerobic and pressurized serum bottles of 0.15 L.
- 1 L fermenters employed for the succinic acid production • with digestate's liquid fraction.

Lab-scale findings

Biopolymers

	\wedge
\sim	
$\overline{}$	

Successful growth of *C. Necator* in digestate's liquid fraction.

Limitation in gas mixture gas/liquid mass transfer into the fermentation broth.

More efficient gas injection system to improve the effectiveness of the fermentation process.

	Ρ
\vee	u

Preliminary data to optimize the process in the upscaled operation.

Lower headspace overpressure and gas/liquid mass transfer.

Pilot-scale reactor design optimize the fermentation mode, increasing headspace overpressure and improving gas/liquid mass transfer.

Pilot hybrid fermenter

Reactor design:

- Automatic / Programable
- Temp, stirring, pH, DO, CO2 controls
- Gas inlets / mixing
- Pumps for feeding / emptying
- Gas detection & measuring
- Cleaning in Place
- Bottom drain
- Sampling Ports
- Pressure control valves
- PLC Control Unit

PLC – Control Unit

Volume: 50 L Pressure: max. 3 bar

Microalgae as alternative protein source from CO₂

Microalgae as alternative protein source from CO₂

- Freshwater, digestate nutrients uptake capability
- ✓ Efficient CO₂ uptake
- Opt Temp. 25-27 °C. Resistance to a high range
- PBR vertical tubular productivity > 1 g/L

Parachlorella

kessleri

Tetradesmus

obliquus

Chlorella

vulgaris

Microalgae as alternative protein source from CO_2

Micralgae strains

Chlorella vulgaris

Parachlorella kessleri

Tetradesmus obliguus

Operation

Lab-scale trials

Culture medium: digestate's liquid fractions

Activities conducted in Spain: lab-scale

- Evaluation of the influence of the strain on the production of protein.
- Assessment of the influence of 3 types of digestate's liquid fractions on the production of protein.
- Acclimatisation of the microalgae strains at increasing concentration of nitrogen.

Operational conditions

- $26 \pm 3 \degree C$, 10 days, pH_0 : 8, 0.5 L reactors
- 100 μ mol m⁻² s⁻¹, 0.3 vvm aeration rate, 1.62 % CO₂
- 100 mg NH₄⁺ -N L⁻¹
- Synthetic growing medium vs. digestate's liquid fraction

Parachlorella kessleri

Tetradesmus Chlorella obliquus vulgaris

Α

С

DC/AC

inverter

Charge

controller

Pilot-scale photobioreactor (PBR) design

Considerations for the design:

- Control system for temperature: 28-30°C
- pH control by CO2 addition
- Sensors and probes: pH, T^a, CO2, DO, turbidity, energy consumption and solar irradiance

PV panel unit

- Gas inlets/mixing, peristaltic pump for feeding
- Harvesting: centrifugation
- PLC Control Unit
- PV unit 6 kWh/day

Pilot-scale photobioreactor (PBR)

- Microalgae strain: Parachlorella kessleri.
- Validation of the production of microalgae at pilot scale using synthetic CO₂ and digestate.
- Optimization of the PBR operation to maximize the productivity and CO₂ recovery.
- Validate the production of alternative protein sources at pilot scale using liquified CO₂ and digestate from CS3.

Pilot-scale photobioreactor (PBR) implemented in BETA TC facilities

- Maxb/6mass productivity
- Average biomass productivity: 37 mg VSS/L/d

Microalgae as alternative protein source from CO_2

	liquified (CS3)			SEMPRE-BIO
Biogas plant	digestate	Photobioreactor (PBR)	Microalgae biomass	Algae-based animal feed products

Findings

Successful microalgae cultivation from CO_2 and digestate in the lab and pilot-scale.

Growth performance with digestate similar to synthetic media.

Optimization of the operation with recovered CO_2 and digestate from biogas plants.

Potential of growing microalgae at the Belgian pilot

Belgian pilot

Algae – digestate N balance

Algae – CO₂ balance

Current algae production in the EU

Vazquez Calderon, F., Sanchez Lopez, J., An overview of the algae industry in Europe. 2022 Araújo R et al. Current Status of the Algae Production Industry in Europe: An Emerging Sector of the Blue Bioeconomy. 2021

How to integrate algae in a dairy farm?

Thank you for your attention!

SEMPRE-BIO
SEMPRE BIO
SEMPRE-BIO PROJECT
INFO@SEMPRE-BIO.COM
WWW.SEMPRE-BIO.COM

Webinar Blo-Impact

2 Years of Innovation in Biomethane Production with SEMPRE-BIO

