Process design of WWTP anaerobic digestion biogas upgrade to Compressed Natural Gas (CNG) for applications in public transportation

EUBCE 2024 26th June 2024 Matteo Gilardi (SINTEF)

Introduction

- Biogas production is an effective solution to protect the environment by recycling organic waste streams into renewable energy, while simultaneously reducing GHG emissions.
- Novel and cost-effective biomethane production solutions must be found to maximize the carbon utilization in the feedstock. The main **challenges** are:

1) decrease investment and operational costs
2) optimize feedstock supply and use
3) identify alternative and cheaper feedstocks
4) improve plant efficiency and operations
5) increase and monetize co-benefits from the commercialization of side-products.

The SEMPRE-BIO project

- SEMPRE-BIO's aim is to **demonstrate** novel and **cost-effective biomethane production** solutions to support circular economy and reduce dependence on fossil fuels.
- 5 innovative biomethane production technologies will be **tested in 3 plants** through Europe.
- International consortium with partners from different sectors, including research, industry, academia, end-users and farmers.

Overview and process description

The target is design, modelling, and evaluate key performance indicators for an efficient **full-scale biogas-to-biomethane plant** using an innovative combination of **biomethanation** and proton exchange membrane **water electrolysis**.

Raw gas pretreatment and compression

Feedstock: biogas from **Baix Llobregat Waste-Water Treatment Plant** (WWTP)(Barcelona, Spain)²

Size of feedstock: **370 Nm³/h biogas**

Composition: CH₄/CO₂ molar ratio of 1.87, 1.5 mol% $N_{2^{\prime}}$ and traces of H_2S

ASSUMPTIONS:

• Chilling to 5°C

- 99.99% H₂S removal efficiency
- Compression to 8 bar for methanation

Bio-gas 001 - 006g 🔶 005a 006a 006d ∕) Fan C-001 C-002 C-003 Humidity Chiller-1 Cooler-3 Cooler-4 Cooler-2 007c -P001→H₂S 005c -006c 006f Humidity De-sulfurization Humidity - 007d — 007b -007a Humidity

PEM electrolyser

pseudo O₂/H₂

ASSUMPTIONS:

- Simplified model retrieved from the literature³: only water splitting reaction is considered
- 1.6 MW overall capacity (three stacks of 550 kW) and 70% efficiency
- H₂O feed rate is regulated to achieve the H₂ production required by the methanation stoichiometry (0.16 g H₂/ g biogas)
- Conversion is tuned based on the assigned capacity and efficiency

Bio-methanation

- Operating conditions: 8 bar and 55°C
- Reactor is modelled as a **fixed conversion reactor**, where enzymes catalyse the conversion of hydrogen and carbon dioxide into methane according to reaction:

 $CO_2 + 4 H_2 \rightarrow CH_4 + 2 H_2O$

- Conversion of 98.5% for the limiting reactant (i.e., CO₂)
- Biomethane is compressed to 250 bar for storage as CNG

This project has received funding from the European Union's Horizon Europe programme under grant agreement Nº 101084297

018e

Flowsheet development

- The sub-models are integrated in COCO-COFE simulation environment
- The simulation provides the **mass and energy balance for the process**

Results

The **key performance indicators** for **productivity** and **energy consumption** have been assessed.

KPI	Specific value	Unit of measure	Absolute value	Unit of measure
H ₂ production in PEMEL	0.077	kg/kg H_2O	39.2	kg/h
0_2 production in PEMEL	0.609	$kg/kgH_2^{-}O$	310.9	kg/h
Electricity demand for PEMEL	24.18	MJ/kg biomethane	1.6	MW
Biomethane production	0.588	kg/kg raw biogas	325	Nm³/h
Biomethane purity	97.200	vol%		
Electricity demand for biogas compression	0.414	MJ/kg biomethane	28.81	kW
Electricity demand for biomethane compression	0.760	MJ/kg biomethane	50.40	kW
Overall electricity consumption	25.392	MJ/kg biomethane	1690.03	kW
Overall cooling duty	1.222	MJ/kg biomethane	81.05	kW
Refrigeration duty	0.596	MJ/kg biomethane	39.47	kW

- Increased CH₄ productivity by 53% with respect to the CH₄ content in raw biogas
- The process yields high-purity biomethane (>97 vol% CH₄) from a mediumconcentrated feedstock (65 vol% CH₄)
- **0₂ production can be valorised** (e.g., oxyfuel combustion for steam generation)
- The **major electricity consumption** is associated with the **PEMEL** unit (24.2 MJ/kg CH₄), which does not depend on the considered storage pressure.

Conclusions and future steps

- An innovative technology for producing biomethane from industrial wastewater has been assessed
- A **model** has been **developed and implemented** in process simulator to get the mass and energy balance
- Key performance indicators show that the proposed technology is promising
- The obtained **results** will be used as a **starting point to perform an economic and environmental assessment** (in progress), which are necessary to test the feasibility of the process.

Acknowledgements

This project has received funding from the European Union's Horizon Europe programme under grant agreement Nº 101084297

Funded by the European Union

This was a joint work:

Matteo Gilardi Research Scientist SINTEF Industry

Filippo Bisotti Research Scientist SINTEF Industry

Bernd Wittgens Senior Advisor SINTEF Industry

