

Energy recovery in WWTP through waste gases Training Action on tool #10

SEMPRE-BIO

SEcuring doMestic PRoduction of cost-Effective BIOmethane

Alejandra Córdova V. CETAQUA CENTRO TECNOLÓGICO DEL AGUA

Disclaimer

"Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or CINEA. Neither the European Union nor the granting authority can be held responsible for them."

Funded by the European Union

SEMPRE-BIO at glance

Goals

- Demonstrate novel and cost-effective biomethane production solutions and pathways.
- 2. Increase the market up-take of biomethane related technologies.
- 3. Support circular economy.
- 4. Reduce dependence on fossil fuels.

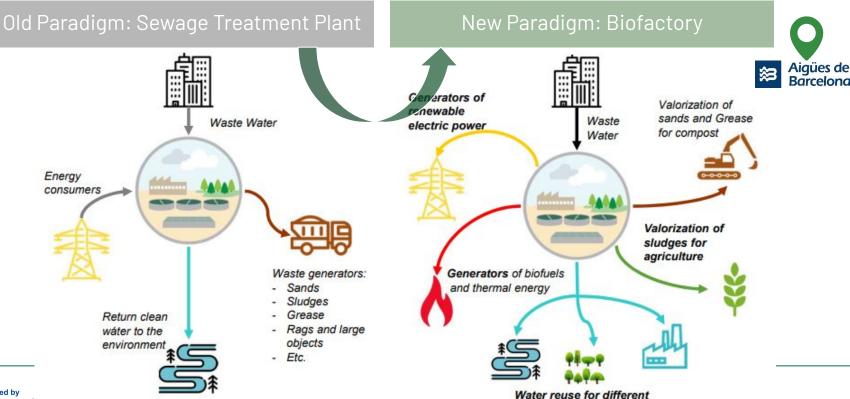
Numbers

NIMBUS

Goals

Foster circular economy:

- Generation of biomethane from sewage sludge.
- Conversion of energy to gas (Power to Gas).
- Use as a sustainable fuel for public transportation.
- Reduce carbon emissions.


Numbers

Project Site: WWTP

uses

Metanation vs Upgrading

Conventional upgrading

Separating CO_2 from CH_4 and CO_2 purifying (H_2S , siloxanes, VOCs...)

and co₂, o₂, H₂O, H₂S... /OCS...)

Methanation

Adding H_2 to biogas to make CO_2 react to CH_4 through methanogens.

	Biogás EDAR [vol.%]	Biometano inyección [vol.%]	Biometano transporte [vol.%]
CO ₂ [vol.%]	30-40%	<2%	<5%*
CH ₄ [vol.%]	60-70%	>90%	>90%*
H ₂ [vol.%]	0%	<5%	<2%
H ₂ S [ppm]	5000-300	<3	<3

*For transport: $C0_2+N_2+0_2$ max. 5%, 0_2 max. 1%, Methane number min. 70, Wobbe index below 41.9-49.0 MJ/Sm3, LHV min. 44 MJ/kg

NIMBUS

- 4 Nm³/h de CH₄
- Mesophilic (~35°C)
- 3-4 barg
- Electrolyzer

SEMPRE-BIO

- $14 \text{ Nm}^3/\text{h} \text{ de CH}_4$
- Thermophilic(~55°C)
- 10-12 barg
- PEMEL

Biomethanation

Energy Renewable energy supply surplus electricity.

Electrolysis Hydrogen is produced from excess power.

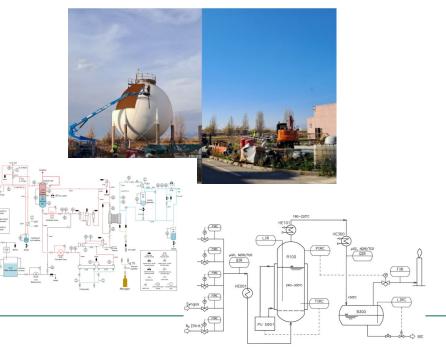
Biogas

Clean biogas without impurities such as H2S, VOCs and siloxanes.

Biomethanation

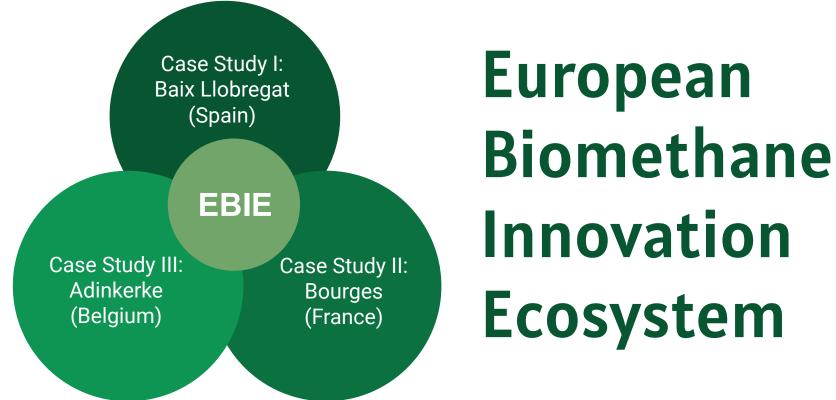
Microorganism and CO_2 , act on the hydrogen, converting it into Biomethane.

0



Biomethanation Demoplant

Life Nimbus



Sempre-Bio

Case Study I: Baix Llobregat (Spain)

DTU

SINTEF

TMB

ProPuls

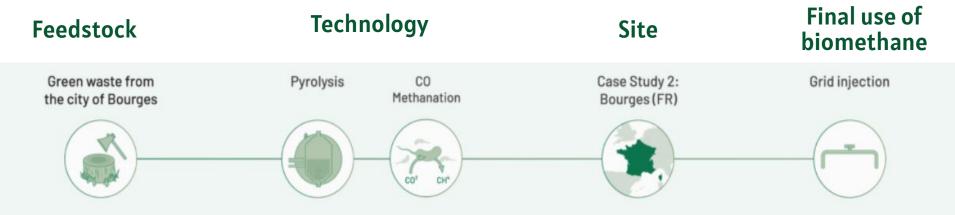
Aigües de

Barcelona

83

CETAQUA CENTRO TECNOLÓGICO DEL AGUA

Case Study 2: Bourges (France)



DTU

() SINTEF

GRDF

(terrawatt DBFZ)

Case Study 3: Adinkerke (Belgium)

SINTEF SINDED

🛆 Beta

DBFZ

CRYO^{inox}

Expected outcomes

Increase the cost-effectiveness of conversion in biomethane production.

Diversify conversion technologies for biomethane.

Contribute to the acceptance of biomethane technologies in the gas market.

Contribute to the demonstration on a semi-industrial scale of new conversion technologies to produce biomethane from wastewater, wood biomass and manure.

Expected impacts

- Biomethane as a substitute for imported LNG.
- Biomethane as a fuel substitute in transportation.
- \bigcirc Reduction of CO₂ by 213 million tons/year by 2050.

Diversify energy sources and new routes.

Reduce the need for strategic reserves.

Smaller extension of critical infrastructure to protect.

¡Thank you for your attention!

in <u>SEMPRE-BIO</u>
@SEMPRE_BIO
SEMPRE-BIO PROJECT
INFO@SEMPRE-BIO.COM
WW.SEMPRE-BIO.COM

